MapReduce for accurate error correction of next-generation sequencing data

Assoc. Prof. Liang Zhao

School of Computing and Electronic Information
Guangxi University & Taihe Hospital

Oct 5th, 2016
What is next-generation sequencing (NGS)?
- High throughput, e.g., millions of sequences per run
- Low cost, e.g., $1000 per human genome

What does NGS data look like?
Applications of NGS data analysis

- **De Novo** genome assembly
- Genome re-sequencing
- Genetic variations:
 - Single Nucleotide Polymorphisms (SNPs)
 - Small insertions/deletions (indels)
 - Structural variations
- Linking genetic variations to diseases
 - Genome-wide association studies (GWAS)
 - Functional categorization of SNPs
- RNA-Seq:
 - Gene expression
 - Exon-intron structure

SNP associated trait categories on Human Chromosome 6 by 2014. The figure is obtained from EBI: http://www.ebi.ac.uk/fgpt/gwas/images/timeseries/gwas-2014-05.png
Errors in NGS data

- **Types of errors:**
 - **Substitution**
 - Error rate of Illumina sequences: 0.5% ~ 2.5%
 - Other platforms: negligible
 - **Insertion/deletion (indel)**
 - Error rate of Roche 454 sequences: 1.5% ~ 5%
 - Error rate of PacBio sequences: 15% ~ 20%
 - Error rate of Oxford Nanopore sequences: 25% ~ 40%
 - Error rate of Illumina sequences: negligible

```
TCTGACTGCAACGGGCAATAT--GTCTCTGT
GGGTCTCTGTTGACTGCAGC
ACGGGCACTA
GAGTGCAACG
TAT--GTCTCTGACT-CAACGGG
GGCAATAT--GTCGTCTG ... 2%3%
2%
3%2%2%
2% 2% 2%
TGCA%
TCTG% CTGA% TGAC% GACT% ACTG% CTGC%
(a)%
(b)%
(c)%
```

(error correction)

(GXU, THH)
Extra complexity introduced by errors

- **De novo assembly**: De Bruijn graph-based
 - Branches
 - Bubbles
 - Tips

- **Mapping**:
 - Incorrect place
 - Multiple places
 - Unable to map

- **Variants calling**:
 - False positive
 - SNP occurs in 1/300
Existing error correction approaches

- K-spectrum-based approaches
- Suffix tree-/array-based approaches
- Multiple sequence alignment-based-based approaches
- Cluster-based approaches
- Probabilistic model-based approaches

(a) (b) (c)
K-spectrum-based approach

- **Algorithm briefing**
 - Decompose reads into k-mers;
 - Count the frequencies of k-mers;
 - Substitute the k-mer having low frequency to the nearest high one.

- **Bloom Filter**
- **graph model**

- **Pros & cons:**
 - Pretty fast
 - Good scalability
 - Very sensitive to k
Suffix tree-/array-based approach

- **Algorithm briefing**
 - Construct suffix tree/array for all the reads;
 - Count the frequencies of all the nodes;
 - Substitute the branch having low frequency to its neighbor with high frequency.

- **Pros & cons:**
 - k is flexible
 - Memory consuming
 - Slow

![Suffix tree/array diagram](image-url)
Multiple sequence alignment-based approach

- Algorithm briefing
 - Group reads by k-mers;
 - Perform multiple sequence alignment;
 - Edit reads by using the consensus of the alignment.

- Pros & cons:
 - More accurate
 - Not very sensitive to k
 - Time and space complexity are very high
Existing approaches cannot guarantee the completeness of coverage.

Suppose read length is l, per base error rate is e, position coverage is d, and k-mer size is k, then the expected number of k-mers (the same k-mer) cover each position is:

$$d' = d \times \frac{l - k + 1}{l} \times (1 - e)^k$$
Two-layered MapReduce framework

alignment_1

alignment_2

alignment_3

graph_1

graph_2

graph_3
The first layer of MapReduce

reads

(groups)

(k, j, i, l)

k-mer

error correction

(GXU, THH)
The first layer of MapReduce

- **Input:**
 - A set of Paired-end Read \(R \).

- **Goal:**
 - Fishing out prospective erroneous bases from \(R \).

- **Procedures:**
 - Map all the reads of \(R \) into groups:
 - The keys are the \(k \)-mers;
 - The values are the tuples, \((\kappa, j, i)\), representing the \(k \)-mer \(\kappa \) is in read \(r_j \) starting at position \(i \);
 - The tuples having the same \(\kappa \) are assigned to the same group;
 - Perform multiple reads alignment, taking the \(k \)-mer \(\kappa \) as seed.
 - Identify positions from the alignments having inconsistent bases composition.
 - Recombine reads covering the same position that has been identified as erroneous.
The first layer of MapReduce

- Completes the coverage by collecting reads from multiple groups.
- Improves the accuracy markedly.
The second layer of MapReduce

- **Input:**
 - The prospective erroneous positions with covering reads provided.

- **Goal:**
 - Correct erroneous bases of all the reads.

- **Procedure:**
 - Map all the positions to computing units:
 - The key is the position;
 - The value is the reads covering the position.
 - Correct the prospective erroneous bases through the following statistics:
 \[
 L_{x/x_0} = \log \frac{\prod_j I(\hat{j} = x) * p_j + I(\hat{j} \neq x) * (1 - p_j)/3}{\prod_j I(\hat{j} = x_0) * p_j + I(\hat{j} \neq x_0) * (1 - p_j)/3}
 \]
 where \(I(\cdot)\) is a indicator function, \(p_j\) is the probability that the base \(j\) called correctly, \(x_0\) is the base having the largest support, and \(x\) be the prospective erroneous base to be corrected.
Data sets

- **Data sets used for performance evaluation**

<table>
<thead>
<tr>
<th>Data set</th>
<th>Genome name</th>
<th>Genome size (mbp)</th>
<th>Read length (bp)</th>
<th>Coverage</th>
<th>Number of paired-end reads</th>
<th>Per base error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>S. aueus</td>
<td>2.8</td>
<td>101</td>
<td>46.3×</td>
<td>1,294,104</td>
<td>1.17</td>
</tr>
<tr>
<td>R2</td>
<td>R.sphaeroides</td>
<td>4.6</td>
<td>101</td>
<td>33.6×</td>
<td>766,646</td>
<td>1.28</td>
</tr>
<tr>
<td>R3</td>
<td>H.sapiens 14</td>
<td>88.3</td>
<td>101</td>
<td>38.3×</td>
<td>16,757,120</td>
<td>0.86</td>
</tr>
<tr>
<td>R4</td>
<td>B. impatiens</td>
<td>249.2</td>
<td>124</td>
<td>150.8×</td>
<td>303,118,594</td>
<td>0.96</td>
</tr>
<tr>
<td>D1</td>
<td>E.Coli</td>
<td>4.6</td>
<td>101</td>
<td>30.0×</td>
<td>689,927</td>
<td>1.35</td>
</tr>
<tr>
<td>D2</td>
<td>S. cerevisiae</td>
<td>12.4</td>
<td>101</td>
<td>60.2×</td>
<td>3,599,533</td>
<td>1.53</td>
</tr>
<tr>
<td>D3</td>
<td>H.sapiens 22</td>
<td>41.8</td>
<td>101</td>
<td>30.0×</td>
<td>6,209,209</td>
<td>1.47</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td>150</td>
<td>60.0×</td>
<td>8,361,240</td>
<td>1.59</td>
</tr>
</tbody>
</table>

- R1 and R4 are real data sets.
- D1 to D4 are simulated data sets.
<table>
<thead>
<tr>
<th>data</th>
<th>corrector</th>
<th>reca</th>
<th>prec</th>
<th>gain</th>
<th>pber*</th>
<th>data</th>
<th>corrector</th>
<th>reca</th>
<th>prec</th>
<th>gain</th>
<th>pber*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEC</td>
<td>0.893</td>
<td>0.924</td>
<td>0.874</td>
<td>0.103</td>
<td></td>
<td>MEC</td>
<td>0.944</td>
<td>0.963</td>
<td>0.894</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>Coral</td>
<td>0.803</td>
<td>0.858</td>
<td>0.728</td>
<td>0.210</td>
<td></td>
<td>Coral</td>
<td>0.663</td>
<td>0.970</td>
<td>0.642</td>
<td>0.460</td>
</tr>
<tr>
<td></td>
<td>Racer</td>
<td>0.822</td>
<td>0.929</td>
<td>0.760</td>
<td>0.190</td>
<td></td>
<td>Racer</td>
<td>0.921</td>
<td>0.949</td>
<td>0.872</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>BFE,S</td>
<td>0.409</td>
<td>0.650</td>
<td>0.189</td>
<td>0.879</td>
<td></td>
<td>BFE,S</td>
<td>0.722</td>
<td>0.989</td>
<td>0.714</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>SGA</td>
<td>0.817</td>
<td>0.927</td>
<td>0.753</td>
<td>0.196</td>
<td></td>
<td>SGA</td>
<td>0.726</td>
<td>0.995</td>
<td>0.716</td>
<td>0.323</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>MEC</td>
<td>0.874</td>
<td>0.936</td>
<td>0.814</td>
<td>0.260</td>
<td></td>
<td>MEC</td>
<td>0.836</td>
<td>0.884</td>
<td>0.746</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>Coral</td>
<td>0.690</td>
<td>0.779</td>
<td>0.495</td>
<td>0.430</td>
<td></td>
<td>Coral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Racer</td>
<td>0.797</td>
<td>0.890</td>
<td>0.699</td>
<td>0.230</td>
<td></td>
<td>Racer</td>
<td>0.541</td>
<td>0.703</td>
<td>0.313</td>
<td>0.484</td>
</tr>
<tr>
<td></td>
<td>BFE,S</td>
<td>0.558</td>
<td>0.965</td>
<td>0.538</td>
<td>0.390</td>
<td></td>
<td>BFE,S</td>
<td>0.018</td>
<td>0.003</td>
<td>-0.517</td>
<td>0.862</td>
</tr>
<tr>
<td></td>
<td>SGA</td>
<td>0.641</td>
<td>0.966</td>
<td>0.613</td>
<td>0.319</td>
<td></td>
<td>SGA</td>
<td>0.457</td>
<td>0.636</td>
<td>0.195</td>
<td>0.607</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>MEC</td>
<td>0.999</td>
<td>0.996</td>
<td>0.995</td>
<td>0.007</td>
<td></td>
<td>MEC</td>
<td>0.997</td>
<td>0.984</td>
<td>0.983</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>Coral</td>
<td>0.998</td>
<td>0.986</td>
<td>0.984</td>
<td>0.024</td>
<td></td>
<td>Coral</td>
<td>0.995</td>
<td>0.954</td>
<td>0.947</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>Racer</td>
<td>0.998</td>
<td>0.981</td>
<td>0.980</td>
<td>0.032</td>
<td></td>
<td>Racer</td>
<td>0.994</td>
<td>0.957</td>
<td>0.949</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>BFE,S</td>
<td>0.980</td>
<td>0.998</td>
<td>0.979</td>
<td>0.033</td>
<td></td>
<td>BFE,S</td>
<td>0.984</td>
<td>0.997</td>
<td>0.981</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>SGA</td>
<td>0.991</td>
<td>0.999</td>
<td>0.990</td>
<td>0.016</td>
<td></td>
<td>SGA</td>
<td>0.970</td>
<td>0.997</td>
<td>0.968</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>MEC</td>
<td>0.987</td>
<td>0.915</td>
<td>0.896</td>
<td>0.340</td>
<td></td>
<td>MEC</td>
<td>0.996</td>
<td>0.939</td>
<td>0.928</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>Coral</td>
<td>0.973</td>
<td>0.762</td>
<td>0.670</td>
<td>0.510</td>
<td></td>
<td>Coral</td>
<td>0.971</td>
<td>0.783</td>
<td>0.702</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>Racer</td>
<td>0.880</td>
<td>0.466</td>
<td>0.670</td>
<td>1.800</td>
<td></td>
<td>Racer</td>
<td>0.883</td>
<td>0.487</td>
<td>-0.017</td>
<td>1.610</td>
</tr>
<tr>
<td></td>
<td>BFE,S</td>
<td>0.881</td>
<td>0.892</td>
<td>0.774</td>
<td>0.350</td>
<td></td>
<td>BFE,S</td>
<td>0.909</td>
<td>0.897</td>
<td>0.795</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td>SGA</td>
<td>0.883</td>
<td>0.907</td>
<td>0.792</td>
<td>0.340</td>
<td></td>
<td>SGA</td>
<td>0.891</td>
<td>0.889</td>
<td>0.819</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>MEC</td>
<td>0.996</td>
<td>0.939</td>
<td>0.996</td>
<td>0.340</td>
<td></td>
<td>MEC</td>
<td>0.996</td>
<td>0.939</td>
<td>0.928</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>Coral</td>
<td>0.973</td>
<td>0.762</td>
<td>0.670</td>
<td>0.510</td>
<td></td>
<td>Coral</td>
<td>0.971</td>
<td>0.783</td>
<td>0.702</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>Racer</td>
<td>0.880</td>
<td>0.466</td>
<td>0.670</td>
<td>1.800</td>
<td></td>
<td>Racer</td>
<td>0.883</td>
<td>0.487</td>
<td>-0.017</td>
<td>1.610</td>
</tr>
<tr>
<td></td>
<td>BFE,S</td>
<td>0.881</td>
<td>0.892</td>
<td>0.774</td>
<td>0.350</td>
<td></td>
<td>BFE,S</td>
<td>0.909</td>
<td>0.897</td>
<td>0.795</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td>SGA</td>
<td>0.883</td>
<td>0.907</td>
<td>0.792</td>
<td>0.340</td>
<td></td>
<td>SGA</td>
<td>0.891</td>
<td>0.889</td>
<td>0.819</td>
<td>0.316</td>
</tr>
</tbody>
</table>

pber* is pber × 10⁻⁴; gain = (TP-FP)/(TP+FN); reca = TP/(TP+FN); prec = TP/(TP+FP).
The experiments are conducted on R3.

MEC is less sensitive to the change of coverage.
High impact of k on k-spectrum-based approach

Experiments are carried out on R3.

The size of k has high impact on existing k-spectrum-based approaches.
• Experiments are carried out on R3.
• The size of k has low impact on MEC.
Running time comparison

Environment of experiments:
- CPU: 2 six-core Intel Xeon X5690 3.47GHz
- RAM: 96G
Environment of experiments:

- CPU: 2 six-core Intel Xeon X5690 3.47GHz
- RAM: 96G

![RAM usage comparison chart](chart.png)
Concluding remarks

- **MEC** is an accurate approach for correcting NGS substitution errors. It has the following advantages:
 - Markedly better accuracy
 - completeness of coverage
 - Tolerant to various size of \(k \)
 - \(k \)-mers are only used to group reads but not for correcting errors
 - Easy to deploy on cloud computing platform
 - Both identifying prospective erroneous bases and correcting errors can be carried out in parallel.

- **Future directions:**
 - Improve the time and space complexity.

Acknowledgment

- Prof. Limsoon Wong, NUS
- Prof. Jinyan Li, UTS

- National Science Foundation of China (No. 31501070)
- Scientific Research Foundation of GXU (No. XGZ150316)
Good scalability of MEC

![Graph showing time vs. number of nodes with error correction.]
Implementation of coverage completion