Lecture 10
Sequential Pattern Mining

Zhou Shuigeng

June 3, 2007
Outline

- Sequence data
- Sequential patterns
- Basic algorithm for sequential pattern mining
- Advanced algorithms for sequential pattern mining
Outline

- **Sequence data**
- Sequential patterns
- Basic algorithm for sequential pattern mining
- Advanced algorithms for sequential pattern mining
Sequence Data

- Sequence database

Sequence Table

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>6, 1</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4, 5, 6</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>7, 8, 1, 2</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>1, 6</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>1, 8, 7</td>
</tr>
</tbody>
</table>

Timeline Diagram

- Object A:
 - Timestamp 23.5
 - Events: 2, 4, 6
 - Duration: 6

- Object B:
 - Timestamp 4.5
 - Events: 5, 2, 7, 8
 - Duration: 12

- Object C:
 - Timestamp 1.7
 - Events: 1, 6
 - Duration: 8
Examples of Sequence Data

<table>
<thead>
<tr>
<th>Sequence Database</th>
<th>Sequence</th>
<th>Element (Transaction)</th>
<th>Event (Item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Purchase history of a given customer</td>
<td>A set of items bought by a customer at time t</td>
<td>Books, diary products, CDs, etc</td>
</tr>
<tr>
<td>Web Data</td>
<td>Browsing activity of a particular Web visitor</td>
<td>A collection of files viewed by a Web visitor after a single mouse click</td>
<td>Home page, index page, contact info, etc</td>
</tr>
<tr>
<td>Event data</td>
<td>History of events generated by a given sensor</td>
<td>Events triggered by a sensor at time t</td>
<td>Types of alarms generated by sensors</td>
</tr>
<tr>
<td>Genome sequences</td>
<td>DNA sequence of a particular species</td>
<td>An element of the DNA sequence</td>
<td>Bases A,T,G,C</td>
</tr>
</tbody>
</table>

Data Mining: Tech. & Appl.
Formal Definition of a Sequence

- A sequence is an ordered list of elements $s = \langle e_1, e_2, e_3, \ldots \rangle$
 - Each element contains a collection of events (items), i.e., $e_i = \{i_1, i_2, \ldots, i_k\}$
- Length of a sequence, $|s|$, is given by the number of elements in the sequence
- A k-sequence is a sequence that contains k events (items)
Examples of Sequence

- **Web sequence:**
 - `< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >`

- **Sequence of initiating events causing the nuclear accident at 3-mile Island:**
 - (http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)
 - `< {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>`

- **Sequence of books checked out at a library:**
 - `<{Fellowship of the Ring} {The Two Towers} {Return of the King}>`
Formal Definition of a Subsequence

- A sequence \(<a_1 \ a_2 \ ... \ a_n>\) is contained in another sequence \(<b_1 \ b_2 \ ... \ b_m>\) \((m \geq n)\) if there exist integers \(i_1 < i_2 < ... < i_n\) such that \(a_1 \subseteq b_{i_1}, a_2 \subseteq b_{i_2}, ..., a_n \subseteq b_{i_n}\).

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<{2,4} {3,5,6} {8}>)</td>
<td>(<{2} {3,5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1,2} {3,4}>)</td>
<td>(<{1} {2}>)</td>
<td>No</td>
</tr>
<tr>
<td>(<{2,4} {2,4} {2,5}>)</td>
<td>(<{2} {4}>)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The support of a subsequence \(w\) is defined as the fraction of data sequences that contain \(w\).

- A *sequential pattern* is a frequent subsequence (i.e., a subsequence whose support is \minsup).
Outline

- Sequence data
- **Sequential patterns mining**
- Basic algorithm for sequential pattern mining
- Advanced algorithms for sequential pattern mining
Sequential Pattern Mining: Definition

- **Given:**
 - a database of sequences
 - a user-specified minimum support threshold, \(\text{mins}up \)

- **Task:**
 - Find all subsequences with support \(\text{mins}up \)
Sequential Pattern Mining: Challenges

- Given a sequence: \(<\{a\ b\} \{c\ d\ e\} \{f\} \{g\ h\ i\}\>
- Examples of subsequences: \(<\{a\} \{c\ d\}\ {f\} \{g\}\>, \(<\{c\ d\ e\}\>, \(<\{b\} \{g\}\>, \text{ etc.}\>

- How many k-subsequences can be extracted from a given n-sequence?

The answer is:

\[
\binom{n}{k} = \binom{9}{4} = 126
\]
Sequential Pattern Mining: Challenges

- So, a **huge** number of possible sequential patterns are hidden in databases

- A mining algorithm should
 - find the **complete set of patterns**, when possible, satisfying the minimum support (frequency) threshold
 - be highly **efficient, scalable**, involving only a small number of database scans
 - be able to incorporate various kinds of **user-specific constraints**
Sequential Pattern Mining: Example (1)

Given a set of sequences, find the complete set of frequent subsequences

A sequence: < (ef) (ab) (df) cb >

A sequence database

<table>
<thead>
<tr>
<th>SID</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)cb></td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<abc> is a subsequence of <a(abc)(ac)d(cf)>

Given support threshold \(\text{min_sup} = 2 \), <ab(c)> is a sequential pattern.
Sequential Pattern Mining: Example(2)

- **Minsup = 50%**
- **Examples of Frequent Subsequences:**
 - `< {1,2} > s=60%`
 - `< {2,3} > s=60%`
 - `< {2,4} > s=80%`
 - `< {3} {5} > s=80%`
 - `< {1} {2} > s=80%`
 - `< {2} {2} > s=60%`
 - `< {1} {2,3} > s=60%`
 - `< {2} {2,3} > s=60%`
 - `< {1,2} {2,3} > s=60%`

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1,2,4</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2,4,5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3,4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2,4,5</td>
</tr>
</tbody>
</table>
Sequential Pattern Mining: Applications

- Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
- Medical treatment, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, etc.
- Telephone calling patterns, Weblog click streams
- DNA sequences and gene structures
Studies on Sequential Pattern Mining (early period)

- Concept introduction and an initial Apriori-like algorithm
 - R. Agrawal & R. Srikant. “Mining sequential patterns,” ICDE’95

- GSP—An Apriori-based, influential mining method (developed at IBM Almaden)

- From sequential patterns to episodes (Apriori-like + constraints)

- Mining sequential patterns with constraints
Outline

- Sequence data
- Sequential patterns
- Basic algorithm for sequential pattern mining
- Advanced algorithms for sequential pattern mining
A Basic Property of Sequential Patterns: Apriori

- A basic property: Apriori (Agrawal & Sirkant’94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of S is frequent
 - E.g, $<hb>$ is infrequent \rightarrow so do $<hab>$ and $<(ah)b>$

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
<th>support threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$(bd)cb(ac)$</td>
<td>$min_sup = 2$</td>
</tr>
<tr>
<td>20</td>
<td>$(bf)(ce)b(fg)$</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$(ah)(bf)abf$</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$(be)(ce)d$</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>$a(bd)bcb(ade)$</td>
<td></td>
</tr>
</tbody>
</table>
Extracting Sequential Patterns

Given \(n \) events: \(i_1, i_2, i_3, \ldots, i_n \)

Candidate 1-subsequences:
- \(\langle i_1 \rangle, \langle i_2 \rangle, \langle i_3 \rangle, \ldots, \langle i_n \rangle \)

Candidate 2-subsequences:
- \(\langle i_1, i_2 \rangle, \langle i_1, i_3 \rangle, \ldots, \langle i_1 \rangle \{i_1\}, \langle i_1 \rangle \{i_2\}, \ldots, \langle i_{n-1} \rangle \{i_n\} \)

Candidate 3-subsequences:
- \(\langle i_1, i_2, i_3 \rangle, \langle i_1, i_2, i_4 \rangle, \ldots, \langle i_1, i_2 \rangle \{i_1\}, \langle i_1, i_2 \rangle \{i_2\}, \ldots, \langle i_1 \rangle \{i_1, i_2\}, \langle i_1 \rangle \{i_1, i_3\}, \ldots, \langle i_1 \rangle \{i_1\} \{i_1\}, \langle i_1 \} \{i_1\} \{i_2\}, \ldots \)
GSP—A Generalized Sequential Pattern Mining Algorithm

- GSP (Generalized Sequential Pattern) mining algorithm
 - proposed by Agrawal and Srikant, EDBT’96
- Outline of the method
 - **Step 1:**
 - Make the first pass over the sequence database D to yield all the 1-element frequent sequences
 - **Step 2:** Repeat until no new frequent sequences are found
GSP—A Generalized Sequential Pattern Mining Algorithm

Outline of the method

Step 2: Repeat until no new frequent sequences are found

- **Candidate Generation:**
 - Merge pairs of frequent subsequences found in the \((k-1)th\) pass to generate candidate sequences that contain \(k\) items

- **Candidate Pruning:**
 - Prune candidate \(k\)-sequences that contain infrequent \((k-1)\)-subsequences

- **Support Counting:**
 - Make a new pass over the sequence database \(D\) to find the support for these candidate sequences

- **Candidate Elimination:**
 - Eliminate candidate \(k\)-sequences whose actual support is less than \(\text{minsup}\)
Candidate Generation

- **Base case (k=2):**
 - Merging two frequent 1-sequences \(<\{i_1\}\) and \(<\{i_2\}\) will produce two candidate 2-sequences: \(<\{i_1\} \{i_2\}\) and \(<\{i_1 \ i_2\}\>

- **General case (k>2):**
 - A frequent \((k-1)\)-sequence \(w_1\) is merged with another frequent \((k-1)\)-sequence \(w_2\) to produce a candidate \(k\)-sequence if the subsequence obtained by removing the first event in \(w_1\) is the same as the subsequence obtained by removing the last event in \(w_2\)
 - The resulting candidate after merging is given by the sequence \(w_1\) extended with the last event of \(w_2\)
 - If the last two events in \(w_2\) belong to the same element, then the last event in \(w_2\) becomes part of the last element in \(w_1\)
 - Otherwise, the last event in \(w_2\) becomes a separate element appended to the end of \(w_1\)
Candidate Generation

Examples

- Merging $w_1 = \{1\} \{2, 3\} \{4\}$ and $w_2 = \{2, 3\} \{4, 5\}$ produces the candidate sequence $\{1\} \{2, 3\} \{4, 5\}$ because the last two events in w_2 (4 and 5) belong to the same element.

- Merging $w_1 = \{1\} \{2, 3\} \{4\}$ and $w_2 = \{2, 3\} \{4\} \{5\}$ produces the candidate sequence $\{1\} \{2, 3\} \{4\} \{5\}$ because the last two events in w_2 (4 and 5) do not belong to the same element.

- We do not have to merge the sequences $w_1 = \{1\} \{2, 6\} \{4\}$ and $w_2 = \{1\} \{2\} \{4, 5\}$ to produce the candidate $\{1\} \{2, 6\} \{4, 5\}$ because if the latter is a viable candidate, then it can be obtained by merging w_1 with $\{2, 6\} \{4, 5\}$.
GSP Example

Frequent 3-sequences

Candidate Generation

Candidate Pruning

Data Mining: Tech. & Appl.
Finding Length-1 Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

\[
\text{min}_\text{sup} = 2
\]

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
<th>Cand</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(bd)cb(ac)</td>
<td><a></td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>(bf)(ce)b(fg)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>(ah)(bf)abf</td>
<td><c></td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>(be)(ce)d</td>
<td><d></td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>a(bd)bcb(ade)</td>
<td><e></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td><f></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><g></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><h></td>
<td>1</td>
</tr>
</tbody>
</table>

Data Mining: Tech. & Appl.
Generating Length-2 Candidates

51 length-2 Candidates

<table>
<thead>
<tr>
<th></th>
<th><a></th>
<th></th>
<th><c></th>
<th><d></th>
<th><e></th>
<th><f></th>
</tr>
</thead>
<tbody>
<tr>
<td><a></td>
<td></td>
<td><aa></td>
<td><ab></td>
<td><ac></td>
<td><ad></td>
<td><ae></td>
</tr>
<tr>
<td></td>
<td><ba></td>
<td></td>
<td><bb></td>
<td><bc></td>
<td><bd></td>
<td><be></td>
</tr>
<tr>
<td><c></td>
<td><ca></td>
<td><cb></td>
<td></td>
<td><cc></td>
<td><cd></td>
<td><ce></td>
</tr>
<tr>
<td><d></td>
<td><da></td>
<td><db></td>
<td><dc></td>
<td></td>
<td><dd></td>
<td><de></td>
</tr>
<tr>
<td><e></td>
<td><ea></td>
<td><eb></td>
<td><ec></td>
<td><ed></td>
<td></td>
<td><ee></td>
</tr>
<tr>
<td><f></td>
<td><fa></td>
<td><fb></td>
<td><fc></td>
<td><fd></td>
<td><fe></td>
<td></td>
</tr>
</tbody>
</table>

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57% candidates
Generating Length-3 Candidates and Finding Length-3 Patterns

- **Generate Length-3 Candidates**
 - **Self-join length-2 sequential patterns**
 - Based on the Apriori property
 - \(<ab>, <aa> \text{ and } <ba> \text{ are all length-2 sequential patterns} \rightarrow <aba> \text{ is a length-3 candidate}\)
 - \<(bd)>, <bb> \text{ and } <db> \text{ are all length-2 sequential patterns} \rightarrow <(bd)b> \text{ is a length-3 candidate}\)
 - 46 candidates are generated

- **Find Length-3 Sequential Patterns**
 - **Scan database once more, collect support counts for candidates**
 - 19 out of 46 candidates pass support threshold
The GSP Mining Process

5th scan: 1 cand. 1 length-5 seq. pat. \[(bd)cba\]
4th scan: 8 cand. 6 length-4 seq. pat. \[\text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots}\]
3rd scan: 46 cand. 19 length-3 seq. pat. 20 cand. not in DB at all \[\text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots}\]
2nd scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all \[\text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots} \quad \text{\ldots}\]
1st scan: 8 cand. 6 length-1 seq. pat.

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>[(bd)cb(ac)]</td>
</tr>
<tr>
<td>20</td>
<td>[(bf)(ce)b(fg)]</td>
</tr>
<tr>
<td>30</td>
<td>[(ah)(bf)abf]</td>
</tr>
<tr>
<td>40</td>
<td>[(be)(ce)d]</td>
</tr>
<tr>
<td>50</td>
<td>[a(bd)bcb(ade)]</td>
</tr>
</tbody>
</table>

\[\text{min_sup} = 2\]
Time Constraints (I)

\[
\begin{array}{c}
\{A, B\} \quad \{C\} \quad \{D, E\} \\
\begin{array}{c}
\leq x_g \\
\leq m_g
\end{array}
\begin{array}{c}
> n_g
\end{array}
\end{array}
\]

\[x_g = 2, \ n_g = 0, \ m_g = 4\]

<table>
<thead>
<tr>
<th>Data sequence, d</th>
<th>Sequential Pattern, s</th>
<th>d contains s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<{2,4} {3,5,6} {4,7} {4,5} {8}>)</td>
<td>(<{6} {5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1} {2} {3} {4} {5}>)</td>
<td>(<{1} {4}>)</td>
<td>No</td>
</tr>
<tr>
<td>(<{1} {2,3} {3,4} {4,5}>)</td>
<td>(<{2} {3} {5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>)</td>
<td>(<{1,2} {5}>)</td>
<td>No</td>
</tr>
</tbody>
</table>

Data Mining: Tech. & Appl.
Mining Sequential Patterns with Time Constraints

- **Approach 1:**
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns

- **Approach 2:**
 - Modify GSP to directly prune candidates that violate timing constraints

Question:
- Does Apriori principle still hold?
Apriori Principle for Sequence Data

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1,2,4</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1, 2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2,4,5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3, 4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4, 5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1, 3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2, 4, 5</td>
</tr>
</tbody>
</table>

Suppose:
\[x_g = 1 \text{ (max-gap)} \]
\[n_g = 0 \text{ (min-gap)} \]
\[m_s = 5 \text{ (maximum span)} \]
\[\text{minsup} = 60\% \]

\{2\} \{5\} \text{ support} = 40\%
but
\{2\} \{3\} \{5\} \text{ support} = 60\%

Problem exists because of max-gap constraint
No such problem if max-gap is infinite
Contiguous Subsequences

- s is a contiguous subsequence of $w = <e_1><e_2>...<e_k>$, if any of the following conditions hold:
 - s is obtained from w by deleting an item from either e_1 or e_k
 - s is obtained from w by deleting an item from any element e_i that contains at least 2 items
 - s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)

- Examples: $s = <\{1\}\{2\}>$
 - is a contiguous subsequence of $<\{1\}\{2\}3>$, $<\{1\}2\{2\}\{3\}>$, and $<\{3\}4\{1\}\{2\}\{2\}3\{4\}>$
 - is not a contiguous subsequence of $<\{1\}\{3\}\{2\}>$ and $<\{2\}\{1\}\{3\}\{2\}>$
Modified Candidate Pruning Step

- **Without maxgap constraint:**
 - A candidate \(k \)-sequence is pruned if at least one of its \((k-1)\)-subsequences is infrequent

- **With maxgap constraint:**
 - A candidate \(k \)-sequence is pruned if at least one of its **contiguous** \((k-1)\)-subsequences is infrequent
Time Constraints (II)

- \(x_g \): max-gap
- \(n_g \): min-gap
- \(ws \): window size
- \(m_s \): maximum span

\[x_g = 2, \quad n_g = 0, \quad ws = 1, \quad m_s = 5 \]

<table>
<thead>
<tr>
<th>Data sequence, (d)</th>
<th>Sequential Pattern, (s)</th>
<th>(d) contains (s)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< {2, 4} {3, 5, 6} {4, 7} {4, 5} {8}>)</td>
<td>(< {3, 4, 5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(< {1} {2} {3} {4} {5}>)</td>
<td>(< {1, 2} {3, 4}>)</td>
<td>No</td>
</tr>
<tr>
<td>(< {1, 2} {2, 3} {3, 4} {4, 5}>)</td>
<td>(< {1, 2} {3, 4}>)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Modified Support Counting Step

- Given a candidate sequential pattern: \(\langle \{a, c\} \rangle \)
 - Any data sequences that contain
 - \(\langle \ldots \{a, c\} \ldots \rangle \),
 - \(\langle \ldots \{a\} \ldots \{c\} \ldots \rangle \) (where \(\text{time}(\{c\}) - \text{time}(\{a\}) \leq ws \))
 - \(\langle \ldots \{c\} \ldots \{a\} \ldots \rangle \) (where \(\text{time}(\{a\}) - \text{time}(\{c\}) \leq ws \))
 - will contribute to the support count of candidate pattern
Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
 - Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining
General Support Counting Schemes

COBJ: one occurrence per object;
CWIN: one occurrence per sliding window;
CMINWIN: number of minimal windows of occurrence;
CDIST_O: distinct occurrences with possibility of event-timestamp overlap;
CDIST: distinct occurrences with no event-timestamp overlap.

Refer to P.-N. Tan, M. Steinbach, and V. Kumar’s text book “Introduction to Data Mining”
Outline

- Sequence data
- Sequential patterns
- Basic algorithms for sequential pattern mining
- Advanced algorithms for sequential pattern mining
What we covered so far

<table>
<thead>
<tr>
<th></th>
<th>Read-based</th>
<th>Write-based</th>
<th>Point-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association Mining</td>
<td>Apriori[AgSr94]</td>
<td>Eclat, MaxClique[Zaki01], FP Growth [HaPe00]</td>
<td>Hmine</td>
</tr>
<tr>
<td>Sequential Pattern Discovery</td>
<td>GSP[AgSr96]</td>
<td>SPADE [Zaki98,Zaki01], PrefixSpan [PHPC01]</td>
<td></td>
</tr>
<tr>
<td>Iceberg Cube</td>
<td>Apriori[AgSr94]</td>
<td></td>
<td>BUC[BeRa99], H-cubing [HPDW01]</td>
</tr>
</tbody>
</table>
Bottlenecks of GSP

- A huge set of candidates could be generated
 - 1,000 frequent length-1 sequences generate length-2 candidates!
 \[1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500\]

- Multiple scans of database in mining

- Real challenge: mining long sequential patterns
 - An exponential number of short candidates
 - A length-100 sequential pattern needs \(10^{30}\) candidate sequences!
 \[\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}\]
FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining

- A divide-and-conquer approach
 - Recursively *project* a sequence database into a set of smaller databases based on the current set of frequent patterns
 - Mine each projected database to find its patterns

- J. Han J. Pei, B. Mortazavi-Asi, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan: Frequent pattern-projected sequential pattern mining. In KDD’00.

\[
\text{f_list: } b\!:5, c\!:4, a\!:3, d\!:3, e\!:3, f\!:2
\]

All seq. pat. can be divided into 6 subsets:
- Seq. pat. containing item \(f \)
- Those containing \(d \) but no \(e \) nor \(f \)
- Those containing \(a \) but no \(d, e \) or \(f \)
- Those containing \(c \) but no \(a, d, e \) or \(f \)
- Those containing only item \(b \)

<table>
<thead>
<tr>
<th>Sequence Database</th>
<th>SDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< (bd)) c b (ac) ></td>
<td></td>
</tr>
<tr>
<td>(< (bf) (ce)) b (fg) ></td>
<td></td>
</tr>
<tr>
<td>(< (ah) (bf)) a b f ></td>
<td></td>
</tr>
<tr>
<td>(< (be) (ce)) d ></td>
<td></td>
</tr>
<tr>
<td>(< a (bd)) b c b (ade) ></td>
<td></td>
</tr>
</tbody>
</table>
From FreeSpan to PrefixSpan: Why?

- **FreeSpan:**
 - Projection-based: No candidate sequence needs to be generated
 - But, projection can be performed at any point in the sequence, and the projected sequences do not shrink much

- **PrefixSpan**
 - Projection-based
 - But only prefix-based projection: less projections and quickly shrinking sequences
Prefix and Suffix (Projection)

- `<a>`, `<aa>`, `<a(ab)>` and `<a(abc)>` are *prefixes* of sequence `<a(abc)(ac)d(cf)>`
- *Given* sequence `<a(abc)(ac)d(cf)>`

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Suffix (Prefix-Based Projection)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><a></code></td>
<td><code><(abc)(ac)d(cf)></code></td>
</tr>
<tr>
<td><code><aa></code></td>
<td><code><(_bc)(ac)d(cf)></code></td>
</tr>
<tr>
<td><code><ab></code></td>
<td><code><(_c)(ac)d(cf)></code></td>
</tr>
</tbody>
</table>
Mining Sequential Patterns by Prefix Projections

- **Step 1:** find length-1 sequential patterns
 - \(<a>, , <c>, <d>, <e>, <f>\)

- **Step 2:** divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
 - The ones having prefix \(<a>\);
 - The ones having prefix \(\);
 - ...
 - The ones having prefix \(<f>\)

<table>
<thead>
<tr>
<th>SID</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(<a(abc)(ac)d(cf)>)</td>
</tr>
<tr>
<td>20</td>
<td>(<(ad)c(bc)(ae)>)</td>
</tr>
<tr>
<td>30</td>
<td>(<(ef)(ab)(df)cb>)</td>
</tr>
<tr>
<td>40</td>
<td>(<eg(af)cbc>)</td>
</tr>
</tbody>
</table>

Data Mining: Tech. & Appl.
Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
 - <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
 - Further partition into 6 subsets
 - Having prefix <aa>
 - ...
 - Having prefix <af>

<table>
<thead>
<tr>
<th>SID</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)cb></td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

Data Mining: Tech. & Appl.
Completeness of PrefixSpan

SDB

<table>
<thead>
<tr>
<th>SID</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td>(ef)(ab)(df)cb</td>
</tr>
<tr>
<td>40</td>
<td><eg(af)cbc></td>
</tr>
</tbody>
</table>

Length-1 sequential patterns

- <a>, , <c>, <d>, <e>, <f>

Length-2 sequential patterns

- <aa>, <ab>, <ac>, <ad>, <af>

Having prefix <a>

- <a>-projected database
 - <(abc)(ac)d(cf)>
 - <(_d)c(bc)(ae)>
 - <(_b)(df)cb>
 - <(_f)cbc>

Having prefix

- -projected database
 - ...
Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: constructing projected databases
 - Can be improved by bi-level projections
Optimization Techniques in PrefixSpan

- Physical projection vs. pseudo-projection
 - Pseudo-projection may reduce the effort of projection when the projected database fits in main memory

- Parallel projection vs. partition projection
 - Partition projection may avoid the blowup of disk space
Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
 - Postfixes of sequences often appear repeatedly in recursive projected databases

- When (projected) database can be held in main memory, use pointers to form projections
 - Pointer to the sequence
 - Offset of the postfix

$$s = \langle a(abc)(ac)d(cf) \rangle$$

$$s|<a>: (, 2) \quad \langle (abc)(ac)d(cf) \rangle$$

$$s|<ab>: (, 4) \quad \langle (_c)(ac)d(cf) \rangle$$
Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
 - Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
 - Disk-based random accessing is very costly
- Suggested Approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data set fits in memory
PrefixSpan is Faster than GSP and FreeSpan

Data Mining: Tech. & Appl.
Effect of Pseudo-Projection

Data Mining: Tech. & Appl.