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Outline of the Course 
• Part 0: Overview

– Lect. 1 (Feb. 29) - Ch1: Introduction 

• Part 1  Relational Databases
– Lect. 2 (Mar. 7) - Ch2: Relational model 

(data model, relational algebra) 
– Lect. 3 (Mar. 14) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 21) – Ch4/5: Intermediate and 

Advanced SQL 

 Part 2  Database Design
– Lect. 5 (Mar. 28) - Ch6: Database design 

based on E-R model
– Apr. 4 (Tomb-Sweeping Day): no course
– Lect. 6 (Apr. 11/18) - Ch7: Relational 

database design 

• Midterm exam:  Apr. 25
– 13：00-15：00，H3109

• Part 3  Data Storage & Indexing 
– Lect. 7 (May 2 -> Apr. 28) - Ch12/13: 

Storage systems & structures
– Lect. 8 (May 10) - Ch14: Indexing

• Part 4  Query Processing & Optimization 
– Lect. 9 (May 17) - Ch15: Query processing
– Lect. 10 (May 24 ) - Ch16: Query 

optimization 

• Part 5 Transaction Management
– Lect. 11 (May 31) - Ch17: Transactions  

– Lect. 12 (Jun. 7) - Ch18: Concurrency 
control

– Lect. 13 (Jun. 14) - Ch19: Recovery system

Final exam: 13:00-15:00, Jun. 26
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University Database

Instructor table Student table
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University Database
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E-R Diagram for a Banking Enterprise

multi-valued 
attribute

derived attribute

Weak entity sets

account-branch
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The Banking Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a  multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• cust_banker = (customer_id, employee_id, type)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)
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Outline
 Features of Good Relational Designs

• Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Larger Relation Schema/更大的模式

• inst_dept (ID, name, salary, dept_name, building, budget) 

– Redundant（冗余）: dept_name, building, budget
• Fudan’s School of CS has about 200 faculty members and staffs 

– Inconsistent（不一致）: dept_name, building, budget 

– Insert failure: cannot insert a tuple without ID, name, salary 

• Functional dependency is needed

dept_name → budget 

• Decomposition

inst_dept

• instructor(ID, name, salary, dept_name)

• department(dept_name, building, budget)
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Smaller Relation Schema/更小的模式

More tuples mean lossy decompositions 
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Good Relation Schema

• RDB design is to find a “good” collection of schemas. A bad 
design may lead to 
– Repetition of information

– Inability to represent certain information
• e.g. representing a new department without faculty

•

• Design goals
– Avoid redundant data

– Ensure that relationships among attributes are represented

– Ensuring no information loss 

– Facilitate the checking of updates for violation of database 
integrity constraints
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Outline
• Features of Good Relational Designs

 Functional Dependency（函数依赖）

➢ Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Example
• Consider the relation schema:

lending_schema = (branch_name, branch_city, assets, customer_name, 
loan_number, amount)

• Redundancy
– Data for branch_name, branch_city, and assets are repeated for each 

loan that a branch makes

– Waste space, complicate updating, and introduce possibility of 
inconsistency of assets value

• Null values
– Cannot store information about a branch if no loans exist 

– Can use null values, but they are difficult to handle
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Decomposition
• Decompose the relation schema lending_schema into:

branch_schema = (branch_name, branch_city, assets)

loan_info_schema = (customer_name, loan_number, branch_name, amount)

• All attributes of an original schema 𝑹 must appear in the 

decomposition (𝑹𝟏, 𝑹𝟐):

𝑹 = 𝑹𝟏 ∪ 𝑹𝟐

• Lossless-join decomposition (无损连接分解): 

– For all possible relations 𝒓 on schema 𝑹: 𝒓 = 𝜫𝑹𝟏(𝒓) ⋈ 𝜫𝑹𝟐(𝒓)
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Example of Non Lossless-Join Decomposition 

• Decomposition of R = (A, B, C)
– R1 = (A,C), R2 = (B,C)

A B C

 1 1

 2 1

 1 1

A C

 1

 1

B C

1 1

2 1

𝒓 𝜫𝑨,𝑪(𝒓) 𝜫𝑩,𝑪(𝒓)

A B C

 1 1

 2 1

 1 1

 2 1

AC (r)      BC (r) 

R1 = (A,B)   R2 = (B,C)？

A B





1
2

 1

𝜫𝑨,𝑩(𝒓)

AB (r)      BC (r) 

lossy

A B C

 1 1

 2 1

 1 1

𝒓

lossless
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Goal - Devise a Theory for the Following

• Decide whether a particular relation 𝑹 is in good form

• In the case that 𝑹 is not in “good” form, decompose it into a set of 

relations {𝑹𝟏, 𝑹𝟐, … , 𝑹𝒏} such that 
– each relation is in good form 

– the decomposition is a lossless-join decomposition（无损连接分解）

– the decomposition is dependency-preservation（保持依赖）

• Our theory is based on:
– functional dependencies (函数依赖)

– multi-valued dependencies
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Functional Dependencies (函数依赖)

• Constraints on the set of legal relations

• Require that the value for a certain set of attributes determines 

uniquely the value for another set of attributes

– Or a set of attributes are determined by another set of attributes

• A functional dependency is a generalization of the notion of a key

– Or key is a specific form of functional dependency
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Functional Dependencies (Cont.)

• Let 𝑹 be a relation schema, 𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹

• The functional dependency 𝜶 → 𝜷 holds on 𝑹
– for ANY legal relations 𝒓(𝑹), whenever any two tuples 𝒕𝟏 and 𝒕𝟐 of 𝒓

agree on the attributes 𝜶, they also agree on the attributes 𝜷

– i.e., 𝒕𝟏 𝜶 = 𝒕𝟐[𝜶] ⇒ 𝒕𝟏 𝜷 = 𝒕𝟐[𝜷]

• E.g., 
– Consider 𝒓(𝑨,𝑩) with the following instance of 𝒓

– the 𝑨 → 𝑩 does NOT hold, but 𝑩 → 𝑨 does hold

1 4

1     5

3 7
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Functional Dependencies (Cont.)
• 𝐾 is a superkey for relation schema 𝑅 iff 𝑲 → 𝑹

• 𝐾 is a candidate key for 𝑅 iff
– 𝑲 → 𝑹, and

– No 𝜶 ⊂ 𝑲, 𝜶 → 𝑹

• FDs allow us to express constraints that cannot be expressed using 
superkeys. Consider the schema:
loan_info_schema = (customer_name, loan_number, branch_name, amount)

We expect this set of FDs to hold:
loan_number → amount
loan_number → branch_name

but would not expect the following to hold: 

loan_number → customer_name
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Applications of Functional Dependencies

• We use functional dependencies to:

– test relations to see if they are legal under a given set of functional 

dependencies, 

– specify constraints on the set of legal relations

• Note: A specific instance of a relation schema may satisfy a 

functional dependency even if the functional dependency does not 

holds on all legal instances.  

– For example, a specific instance of loan_schema may satisfy 

loan_number → customer_name
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Functional Dependencies (Cont.)

• A functional dependency is trivial(平凡的) if it is satisfied by all 

instances of a relation, e.g., 

customer_name, loan_number → customer_name

customer_name → customer_name

– In general, 𝜶 → 𝜷 is trivial if 𝜷 ⊆ 𝜶

• Full dependency and partially dependency

– 𝜷 is fully dependent on 𝜶, if there is no proper subset 𝜶′ of 𝜶 such 

that 𝜶′ → 𝜷. Otherwise, 𝜷 is partially dependent on 𝜶
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Outline
• Features of Good Relational Designs

 Functional Dependency（函数依赖）

– Functional dependency: why and what?

➢ Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Closure of a Set of Functional Dependencies

• Given a set 𝑭 of FDs, there are some other FDs that are logically
implied (逻辑蕴涵) by 𝑭
– E.g., if  𝑨 → 𝑩 and 𝑩 → 𝑪, then we can infer that 𝑨 → 𝑪

– The set of all FDs logically implied by 𝑭 is the closure (闭包) of 𝑭

– We denote the closure of 𝑭 by 𝑭+

• Can find all of 𝑭+ by applying Armstrong’s Axiom（公理）:
– If 𝜷 ⊆ 𝜶, then 𝜶 → 𝜷 (reflexivity:自反律)

– If 𝜶 → 𝜷, then 𝜸𝜶 → 𝜸𝜷 (augmentation:增广律)

– If 𝜶 → 𝜷, and 𝜷 → 𝜸, then 𝜶 → 𝜸 (transitivity:传递律)

• These rules are (正确且完备)
– sound (generate only FDs that actually hold) and 

– complete (generate all FDs that hold).
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Closure of Functional Dependencies (Cont.)

• We can further simplify manual computation of 𝑭+ by using the 

following additional rules.

– If 𝜶 → 𝜷 holds and 𝜶 → 𝜸 holds, then 𝜶 → 𝜷𝜸 holds (union：合并规则)

– If 𝜶 → 𝜷𝜸 holds, then 𝜶 → 𝜷 holds and 𝜶 → 𝜸 holds (decomposition：分解

规则)

– If 𝜶 → 𝜷 holds and 𝜸𝜷 → 𝜹 holds, then 𝜶𝜸 → 𝜹 holds (pseudotransitivity

：伪传递规则)

The above rules can be inferred from Armstrong’s axioms.
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Example

• 𝑹 = 𝑨,𝑩, 𝑪, 𝑮,𝑯, 𝑰 𝑭 = {𝑨 → 𝑩,𝑨 → 𝑪, 𝑪𝑮 → 𝑯,𝑪𝑮 → 𝑰,𝑩 → 𝑯}

• Some members of 𝑭+

– 𝑨 → 𝑯

• by transitivity from 𝑨 → 𝑩 and 𝑩 → 𝑯

– 𝑨𝑮 → 𝑰

• by augmenting 𝑨 → 𝑪 with 𝑮 to get 𝑨𝑮 → 𝑪𝑮 and then transitivity
with 𝑪𝑮 → 𝑰

– 𝑪𝑮 → 𝑯𝑰

• from 𝑪𝑮 → 𝑯 and 𝑪𝑮 → 𝑰: union rule can be inferred from

– definition of functional dependencies, or 

– augmentation of 𝑪𝑮 → 𝑰 to infer 𝑪𝑮 → 𝑪𝑮𝑰, augmentation of 
𝑪𝑮 → 𝑯 to infer 𝑪𝑮𝑰 → 𝑯𝑰, and then transitivity
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Procedure for Computing 𝑭+

• To compute the closure of a set of FDs 𝑭:

NOTE: We will see an alternative procedure for this task later

𝑭+ = 𝑭

apply reflexivity (自反律) /* Generates all trivial dependencies */

repeat
for each FD 𝒇 in 𝑭+

apply augmentation (增广律) rules on 𝑓

add the resulting FDs to 𝑭+

for each pair of FDs 𝒇𝟏 and 𝒇𝟐 in 𝑭+

if 𝒇𝟏 and 𝒇𝟐 can be combined using transitivity (传递律)
then add the resulting FD to 𝑭+

until 𝑭+ does not change any further
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𝑭+

R(X,Y,Z), F = {X→Y, Y→Z}, F+ ？

F+ = {

X→ Φ, Y→ Φ, Z→ Φ, XY→ Φ, XZ→ Φ,   YZ→ Φ, XYZ→ Φ, 

X→X, Y→Y, Z→Z, XY→X, XZ→X,    YZ→Y, XYZ→X,

X→Y, Y→Z, XY→Y, XZ→Y,    YZ→Z, XYZ→Y,

X→Z, Y→YZ, XY→Z, XZ→Z,    YZ→YZ,      XYZ→Z,

X→XY, XY→XY,     XZ→XY,                  XYZ→XY, 

X→XZ, XY→YZ,     XZ→XZ,                  XYZ→YZ,

X→YZ, XY→XZ,     XZ→YZ,                  XYZ→XZ,

X→XYZ, XY→XYZ,    XZ→XYZ,                XYZ→XYZ}

F={X→A1, …… , X→An}, to compute F+ is a NP problem

cv
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Outline
• Features of Good Relational Designs

 Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

➢ Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Closure of Attribute Sets

• Given a set of attributes 𝜶, define the closure of 𝜶 under 𝑭 (denoted 
by 𝜶+) as the set of attributes that are functionally determined by 𝜶
under 𝑭:

𝜶 → 𝜷 is in 𝑭+ ⟺ 𝜷 ⊆ 𝜶+

• Algorithm to compute 𝜶+ :
result:=𝛼;
while (changes to result) do

for each 𝛽 → 𝛾 in 𝐹 do
begin

if 𝛽 ⊆result, then result:=result ∪ 𝛾
end
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Example of Attribute Set Closure
Given R<U,F>, U = {A,B,C,D,E}, F={AB→C,B→D,C→E,EC→B,AC→B};

Compute: (AB)F
+,(AC)F

+,(EC)F
+

X(0)={A，B}；

First loop:

X(1): for each FD in F, find FDs that the left hand side(LHS) is A,B or AB, then 
AB→C,B→D, and X(1)={A,B}∪{C,D}={A,B,C,D};

Second loop:

X(1)≠X(0), find FDs that the left hand side is the subset of {ABCD}, then 
AB→C,B→D,C→E,AC→B, and X(2)=X(1)∪{C,D,E,B}={A,B,C,D,E};

X(2)=U, all attributes are in X(2), the attribute set closure computing is end.

So (AB)F
+ = {A,B,C,D,E}.

(AC)F
+ = ???   (EC)F

+ = ???   

(AC)F
+ = {A,B,C,D,E}； (EC)F

+ = {B,C,D,E}

Note：观察属性在函数依赖集中的情况，如何确定超码、候选码，有何规律？
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Example of Attribute Set Closure

• 𝑹 = 𝑨,𝑩, 𝑪, 𝑮,𝑯, 𝑰 , 𝑭 = {𝑨 → 𝑩,𝑨 → 𝑪, 𝑪𝑮 → 𝑯,𝑪𝑮 → 𝑰,𝑩 → 𝑯}

• Calculate (𝑨𝑮)+

– result = AG

– result = ABCG (𝐴 → 𝐶 and 𝐴 → 𝐵)

– result = ABCGH (𝐶𝐺 → 𝐻 and 𝐶𝐺 ⊆ 𝐴𝐵𝐶𝐺)

– result = ABCGHI = R (𝐶𝐺 → 𝐼 and 𝐶𝐺 ⊆ 𝐴𝐵𝐶𝐺𝐻)

• Is AG a candidate key?  
– Is AG a superkey?

• Does 𝑨𝑮 → 𝑹?  ==  Is (𝑨𝑮)+⊇ 𝑹

– Is any subset of AG a superkey?
• Does 𝑨 → 𝑹?  ==  Is (𝑨)+⊇ 𝑹

• Does 𝑮 → 𝑹?  ==  Is (𝑮)+⊇ 𝑹

(𝑨)+=ABCH

(𝑮)+=G  （观察属性A、G）
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Applications of Attribute Closure

• Testing for superkey

• Testing functional dependencies
– To check if a functional dependency 𝜶 → 𝜷 holds (or, in other words, 

is in 𝑭+), just check if 𝜷 ⊆ 𝜶+

– Compute 𝜶+ by using attribute closure, then check if it contains 𝜷

– A simple and cheap test

• Computing closure of 𝑭
– For each 𝜸 ⊆ 𝑹, we find the closure 𝜸+, and for each 𝑺 ⊆ 𝜸+, we 

output a functional dependency 𝜸 → 𝑺
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Outline
• Features of Good Relational Designs

 Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

➢ Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Canonical Cover (正则覆盖/最小覆盖)
• Sets of FDs may have redundant FDs that can be inferred from 

the others

– E.g., 𝑨 → 𝑪 is redundant in:  {𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑪}

– Parts of a FD may be redundant

• E.g., on RHS: {𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑪𝑫} can be simplified to 
{𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑫} 

• E.g., on LHS: {𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨𝑪 → 𝑫} can be simplified to 
{𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑫} 

• Intuitively, a canonical cover of F is a “minimal” set of FDs 
equivalent to F, having no redundant FDs or redundant parts of FDs 
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Extraneous Attributes (无关属性)

• Consider a set 𝑭 of FDs and the FD 𝜶 → 𝜷 in F
– Attribute A is extraneous (无关的) in 𝜶 (左侧) if 𝑨 ∈ 𝜶 and 𝑭 logically 

implies 𝑭 − 𝜶 → 𝜷 ∪ {(𝜶 − 𝑨) → 𝜷}

– Attribute A is extraneous in 𝜷 (右侧) if 𝑨 ∈ 𝜷 and the set of FDs 
𝑭 − 𝜶 → 𝜷 ∪ {(𝜶 → (𝜷 − 𝑨)} logically implies F

• Note: implication in the opposite direction is trivial in each of the 
cases above

• Example: Given 𝑭 = {𝑨 → 𝑪,𝑨𝑩 → 𝑪}

– 𝑩 is extraneous in 𝑨𝑩 → 𝑪 because {𝑨 → 𝑪, 𝑨𝑩 → 𝑪} logically implies 𝑨 →
𝑪 (i.e., the result of dropping 𝑩 from 𝑨𝑩 → 𝑪)

• Example:  Given 𝑭 = {𝑨 → 𝑪, 𝑨𝑩 → 𝑪𝑫}

– 𝑪 is extraneous in 𝑨𝑩 → 𝑪𝑫, it can be inferred from = {𝑨 → 𝑪, 𝑨𝑩 → 𝑫}
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Testing if an Attribute is Extraneous

• Consider a set F of FDs and → in F.

• To test if attribute A is extraneous in  (左侧LHS)

1. compute ({} – A)+ using the dependencies in F

2. check that ({} – A)+ contains ; if it does, A is extraneous

• To test if attribute A is extraneous in  (右侧RHS)

1. compute + using only the dependencies in F’ = (F – {→}) 

 {→( – A)},

2. check that + contains A; if it does, A is extraneous
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Canonical Cover
• A canonical cover for F is a set of FDs 𝑭𝒄 such that 

– 𝐹 logically implies all dependencies in 𝐹𝑐, and 

– 𝐹𝑐 logically implies all dependencies in 𝐹, and

– No FD in 𝐹𝑐 contains an extraneous attribute, and

– Each left side of FD in 𝐹𝑐 is unique, i.e., there are no two FDs 𝛼1 → 𝛽1
and 𝛼2 → 𝛽2 such that 𝛼1 = 𝛼2

• To compute a canonical cover for 𝐹:
repeat

use the union rule to replace any dependencies in F
𝛼1 → 𝛽1 and 𝛼1 → 𝛽2 with 𝛼1 → 𝛽1 𝛽2

find a FD 𝛼 → 𝛽 with an extraneous attr. either in 𝛼 or in 𝛽
If an extraneous attr. is found, delete it from 𝛼 → 𝛽

until F does not change
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Example of Computing a Canonical Cover
• R = (A, B, C)  F = {A→BC, B→C, A→B, AB→C }, Fc=?

– Combine A→BC and A→B into A→BC

• Set is now {A→BC, B→C, AB→C}

– A is extraneous in AB→C

• Check if the result of deleting A from AB→C is implied by the 
other dependencies B→C

• Set is now {A→BC, B→C}

– C is extraneous in A→BC

• Check if A→C is logically implied by A→B and the other 
dependencies B→C

– The canonical cover is: Fc= {A→B, B→C}

• A canonical cover might not be unique. For {𝑨 → 𝑪,𝑩 → 𝑨𝑪, 𝑪 → 𝑨𝑩}, 
𝑭𝒄 = {𝑨 → 𝑪,𝑩 → 𝑪, 𝑪 → 𝑨𝑩} or 𝑭𝒄 = {𝑨 → 𝑪,𝑩 → 𝑨𝑪, 𝑪 → 𝑩}
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Example of Computing a Canonical Cover

R<U,F>, U={X,Y,Z,W},

F={W→Y,Y→W,X→WY,Z→WY,XZ→W}, Fc?

(1) F={W→Y,Y→W,X→W,X→Y,Z→W,Z→Y,XZ→W}

(2) For LHS, F={W→Y,Y→W,X→W,X→Y,Z→W,Z→Y}

(3) Delete redundant FDs,F={W→Y,Y→W,X→Y,Z→Y}

Fc = {W→Y,Y→W,X→Y,Z→Y}

or Fc = {W→Y,Y→W,X→W,Z→W}
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Example of Computing a Canonical Cover

F = {A→B，B→A，B→C，A→C，C→A}

Fc1= {A→B，B→C，C→A}

Fc2= {A→B，B→A，A→C，C→A} 

• Fc1、Fc2 are all canonical covers for F

• So, a canonical cover might not be unique
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More Examples

• R<U,F>, U={A,B,C,D,E,G}, 

F={AB→C, C→A, BC→D, ACD→B, D→EG, BE→C, CG→BD, CE→AG}，

Compute (AB)+, (AC)+, (CD)+, Fc

– (AB)+={A,B,C,D,E,G}=U, (AC)+ ? (CD)+ ?

– (AC)+={A,C}, (CD)+={A,B,C,D,E,G}=U

– Fc={AB→C,C→A,BC→D,CD→B,D→E,D→G,BE→C,CG→D,CE→G}

– (CG)+={A,B,C,D,E,G}=U, (CE)+={A,B,C,D,E,G}=U
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Find Candidate Keys

• For 𝑹(𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏) and FDs in 𝑭, all attributes can be 

classified into 4 types：

– L：only exists in LHS

– R：only exists in RHS

– N：not exists in either LHS or RHS

– LR：exists in LHS and RHS both



42

Find Candidate Keys (Cont.)

• Algorithm：find candidate keys for R

• Input：R and its FDs set F

• Output：All candidate keys for R
(1) Classify all attributes into two parts: X represents for L and N types, Y for LR type

(2) Compute 𝑿+, if 𝑿+ contains all attributes of R, then X is the only candidate key for 
R, then goes to (5); otherwise goes to (3)

(3) Take attribute A from Y, compute (𝑿𝑨)+. If (𝑿𝑨)+ contains all attributes of R, then 
XA is a candidate key for R. Then take another attribute from Y, continue with the 
process until all attributes in Y are tested

(4) If all candidate keys are found in step (3), then goes to (5); otherwise take 2 or 3 or 
more attributes from Y, and compute the corresponding attribute closure (the attribute 
group should not contain any candidate keys already found), till the attribute closure 
contains all attributes of R

(5) Finished, and output the result
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Find Candidate Keys (Cont.)

• Given R<U, F>, U={X, Y, Z, W}, and F={W→Y, Y→W, X→WY, 

Z→WY, XZ→W}, find all candidate keys of R

a) Fc = {W→Y, Y→W, X→Y, Z→Y} 

b) XLN = XL = XZ，YLR = YW

c) XLN
+ = {X,Y,Z,W} = U，so (XZ) is the only candidate key of R
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Find Candidate Keys (Cont.)

• Given R<U,F>, U={A,B,C,D}, and F={AB→C, C→D, D→A}, find all 

candidate keys of R

a) Fc = {AB→C, C→D, D→A} 

b) XLN = XL = B，YLR = ACD

c) XLN
+ = {B} ≠ U

d) (AB)+ = {ABCD} = U, (BC)+ = {ABCD} = U, (BD)+ = {ABCD} = U,  then (AB)、

(BC)、(BD) are all candidate keys of R
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Find Candidate Keys (Cont.)

• Given R<U,F>, U={OBISQD}, F={S→D, D→S, I→B, B→I, B→O, O→B}, 

find all candidate keys of R 

(1) Fc= { ？}

(2) XLN= ？，YLR= ？

(3) XLN
+={ ？} = or ≠U？

(4) …… ，……

candidate keys of R ？

(QSO)、(QDO)、(QSB)、(QDB)、(QSI)、(QDI)
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Find Candidate Keys (Cont.)
• Given R<U,F>, U={OBISQD}, F={S→D, D→S, I→B, B→I, B→O, O→B}, 

find all candidate keys of R 

(1) Fc={S→D, D→S, I→B, B→I, B→O, O→B}=F

(2) XLN= Q，YLR= SDBIO

(3) XLN
+={Q} ≠U

(4)(QS)+={QSD},(QD)+={QSD},(QB)+={QBIO},(QI)+={QBIO},(QO)+={QBIO};

≠U

(QSO)+、(QSB)+、(QSI)+、(QSD)+ 、(QDO)+、(QDB)+、(QDI)+ 、(QDS)+、

(QBO)+、(QBI)+、(QBS)+、(QBD)+ 、(QIO)+、(QIB)+、(QSI)+、(QID)+ 、

(QOB)+、(QOI)+、(QOS)+、(QOD)+ 、

candidate keys of R:

(QSO)、(QSB)、(QSI)、 (QDO)、 (QDB)、 (QDI)
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Outline
• Features of Good Relational Designs

 Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

➢ Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Goals of Normalization

• Decide whether a particular relation R is in good form

• In the case that R is not in “good” form, decompose it into a set 
of relations {R1,R2,...,Rn} such that 

– each relation is in good form 

– the decomposition is a lossless-join decomposition

– the decomposition is dependency-preservation

• Our theory is based on:

– functional dependencies

– Multi-valued dependencies
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Decomposition
• Decompose the relation schema Lending_schema into:

Branch_schema = (branch_name, branch_city,assets)
Loan_info_schema = (customer_name, loan_number,

branch_name, amount)
• All attributes of an original schema (R) must appear in the 

decomposition (R1, R2):
R = R1  R2

• Lossless-join decomposition.For all possible relations r on schema R
r = R1 (r)    R2 (r)

• Theorem: A decomposition of R into R1 and R2 is lossless join iff at
least one of the following dependencies is in F+:
– R1  R2 → R1

– R1  R2 → R2
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Example of Non Lossless-Join Decomposition 

• Decomposition of R = (A, B, C), F = {A → C, B → C)

R1 = (A,C), R2 = (B,C)

A B C

 1 1

 2 1

 1 1

A C

 1

 1

B C

1 1

2 1

𝒓 𝜫𝑨,𝑪(𝒓) 𝜫𝑩,𝑪(𝒓)

A B C

 1 1

 2 1

 1 1

 2 1

AC (r)      BC (r) 

R1 = (A,B)   R2 = (B,C)？

A B





1
2

 1

𝜫𝑨,𝑩(𝒓)

AB (r)      BC (r) 

lossy

A B C

 1 1

 2 1

 1 1

𝒓

lossless

R1  R2 → R1 ?
R1  R2 → R2 ?

R1  R2 → R2
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Example
• R = (A, B, C)

F = {A → B, B → C)

– Can be decomposed in two different ways

• R1 = (A, B),   R2 = (B, C)

– Lossless-join decomposition:

R1   R2 = {B} and B → BC

– Dependency preserving

• R1 = (A, B),   R2 = (A, C)

– Lossless-join decomposition:

R1   R2 = {A} and A → AB

– Not dependency preserving 
(cannot check B → C without computing R1 R2)
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Example

 Given R<U,F>, U={A,B,C,D,E}, F={AB→C, C→D, D→E}, and a 

decomposition ρ of R into: 

R1(A,B,C), R2(C,D), R3(D,E). 

ρ is a lossless-join decomposition or a lossy one?

– (A,B, C, D, E) -> (A, B, C, D) +(D, E)  (LJD)

– (A,B,C,D) -> (A,B,C) + (C, D) (LJD)

– ρ is LJD
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Test for Lossless-join Decomposition
• Input: 𝑹 < 𝑼, 𝑭 >, 𝑼 = {𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏}, 𝑭, a decomposition of 𝑅: 𝝆 = {𝑹𝟏 <

𝑼𝟏, 𝑭𝟏 >,𝑹𝟐 < 𝑼𝟐, 𝑭𝟐 >,… , 𝑹𝒌 < 𝑼𝒌, 𝑭𝒌 >}

• Output: 𝜌 is a lossless-join decomposition or a lossy one

(1) Construct a table 𝑳 with 𝒌 rows and 𝒏 columns, and each column corresponds to an 
attribute 𝑨𝒋(𝟏 ≤ 𝒋 ≤ 𝒏), and each row corresponds to a schema 𝑹𝒊(𝟏 ≤ 𝒊 ≤ 𝒌). If 𝑨𝒋 is in 
𝑹𝒊 (𝑨𝒋 ∈ 𝑹𝒊), then fill the form with 𝒂𝒋 at 𝑳𝒊,𝒋, otherwise fill it with 𝒃𝒊,𝒋. 

(2) Regard table L as a relation on schema R, and check for each FD in F whether the 
FD is satisfied or not. If the FD is not satisfied, rewrite the table as:

– For a FD in F：X→Y, if t[x1]=t[x2], and t[y1]≠t[y2], then rewrite y with the same 
value;

• If there is an 𝒂𝒋 for y, then another y is set to 𝒂𝒋;

• If there is not an 𝒂𝒋, then use one 𝒃𝒊𝒋 to replace the other y;

– Till no changes occur on form 𝑳

(3) If there is a row of all 𝐚𝐢 (i.e. 𝐚𝟏𝐚𝟐… 𝐚𝐧), then ρ is a lossless-join decomposition. 
Otherwise, ρ is a lossy decomposition.
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Example

• Given R<U,F>, U={A,B,C,D,E}, F={AB→C, C→D, D→E}, and a 
decomposition ρ of R into: R1(A, B, C), R2(C, D), R3(D, E). ρ is a 
lossless-join decomposition or a lossy one?

(1) First, construct a table as:

A B C D E

R1(A,B,C) a1 a2 a3 b14 b15

R2(C,D) b21 b22 a3 a4 b25

R3(D,E) b31 b32 b33 a4 a5
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Example (cont.)

(2) For AB→C in F, no change occurs; for C→D, rewrite 𝒃𝟏𝟒 with 𝒂𝟒, 
and for D→E, rewrite 𝒃𝟏𝟓 and 𝒃𝟐𝟓 as 𝒂𝟓. Then we have a row as: 𝒂𝟏, 
𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓. The decomposition of R into R1, R2, and R3 is a 
lossless-join one. 

A B C D E

R1(A,B,C) a1 a2 a3 b14   a4 b15   a5

R2(C,D) b21 b22 a3 a4 b25   a5

R3(D,E) b31 b32 b33 a4 a5
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Example of Non Lossless-Join Decomposition 

• Decomposition of R = (A, B, C), F = {A → C, B → C)

R1 = (A,C), R2 = (B,C)

A B C

 1 1

 2 1

 1 1

A C

 1

 1

B C

1 1

2 1

𝒓 𝜫𝑨,𝑪(𝒓) 𝜫𝑩,𝑪(𝒓)

A B C

 1 1

 2 1

 1 1

 2 1

AC (r)      BC (r) 

R1 = (A,B)   R2 = (B,C)？

A B





1
2

 1

𝜫𝑨,𝑩(𝒓)

AB (r)      BC (r) 

lossy

A B C

 1 1

 2 1

 1 1

𝒓

lossless

R1  R2 → R1 ?
R1  R2 → R2 ?

R1  R2 → R2
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Example
• R = (A, B, C)

F = {A → B, B → C)

– Can be decomposed in two different ways

• R1 = (A, B),   R2 = (B, C)

– Lossless-join decomposition:

R1   R2 = {B} and B → BC

– Dependency preserving

• R1 = (A, B),   R2 = (A, C)

– Lossless-join decomposition:

R1   R2 = {A} and A → AB

– Not dependency preserving 
(cannot check B → C without computing R1 R2)
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Outline
• Features of Good Relational Designs

 Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

➢ Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Normalization using Functional Dependencies

• When we decompose a relation schema 𝑹 with a set of FDs F into 
𝑹𝟏, 𝑹𝟐,.., 𝑹𝒏 we want
– Lossless-join decomposition: Otherwise decomposition would result in 

information loss

– No redundancy: The relations 𝑹𝒊 preferably should be in either BCNF
or 3NF

– Dependency preservation: Let 𝑭𝒊 be the subset of dependencies 𝑭+

that include only attributes in 𝑹𝒊
• (𝑭𝟏 ∪ 𝑭𝟐 ∪⋯∪ 𝑭𝒏)

+= 𝑭+

• Otherwise, checking updates for violation of FDs may require computing 
joins, which is expensive
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Testing for Dependency Preservation
• To check if FD 𝜶 → 𝜷 is preserved in a decomposition of 𝑹 into 𝑹𝟏, 

𝑹𝟐,…, 𝑹𝒏, we apply the following simplified test

result = 𝛼
while (changes to result) do

for each 𝑅𝑖 in the decomposition
𝑡 = (result ∩ 𝑅𝑖)+ ∩ 𝑅𝑖
result = result ∪ 𝑡

– If result contains all attributes in 𝜷, then the functional dependency 𝜶 → 𝜷 is 
preserved

• We apply the test on all dependencies in F to check if a decomposition 
is dependency preserving

• This procedure takes polynomial time, instead of the exponential time 
required to compute F+ and (𝑭𝟏 ∪ 𝑭𝟐 ∪⋯∪ 𝑭𝒏)

+
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Example

• 𝑹 = (𝑨, 𝑩, 𝑪), 𝑭 = {𝑨 → 𝑩,𝑩 → 𝑪}

– Can be decomposed in two different ways

• 𝑹𝟏 = (𝑨,𝑩), 𝑹𝟐 = (𝑩, 𝑪)

– Lossless-join decomposition: 𝑹𝟏 ∩ 𝑹𝟐 = {𝑩} and 𝑩 → 𝑪

– 𝑨 → 𝑩, 𝑩 → 𝑪, Test A→ 𝐶 ?

– Dependency preserving

• 𝑹𝟏 = (𝑨,𝑩), 𝑹𝟐 = (𝑨, 𝑪)

– Lossless-join decomposition: 𝑹𝟏 ∩ 𝑹𝟐 = {𝑨} and 𝑨 → 𝑩

– 𝑨 → 𝑩, 𝑨 → 𝑪, check 𝑩 → 𝑪

– Not dependency preserving 
(cannot check 𝑩 → 𝑪 without computing 𝑹𝟏 ⋈ 𝑹𝟐)
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Outline
• Features of Good Relational Designs

• Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

 Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Data Normalization (规范化)

• The process of decomposing relations with anomalies to produce 

smaller and well-structured relations

• To validate and improve a logical design so that it satisfies certain 

constraints that avoid unnecessary duplication of data

• The problems of having duplication of data

– Waste of space

– Difficulty in consistency control
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Well-structured Relations
• A relation that contains minimal data redundancy and allows users to 

insert, delete, and update rows without causing data inconsistencies

• Goal is to avoid anomalies
– Insertion Anomaly – adding new rows forces user to create duplicate 

data

– Deletion Anomaly – deleting rows may cause a loss of data that would be 
needed for other future rows

– Modification Anomaly – changing data in a row forces changes to other 
rows because of duplication

General rule of thumb: a table should not pertain to 
more than one entity type
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Steps in 
Normalization
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Atomic Domains and First Normal Form 

• Domain is atomic if its elements are considered to be indivisible 

units 

– attributes do not have any substructure

• A relational schema R is in 1NF if the domains of all attributes of 

R are atomic

• Non-atomic values complicate storage and encourage redundant 

storage of data

– E.g. composite attribute/ multivalued attributes 
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First Normal Form (1NF, Cont.)
• Atomicity is actually a property of how the elements of the domain are used

– E.g. Strings would normally be considered indivisible 

• Suppose that students are given roll numbers which are strings of 

the form 0372001

– If the first four characters are extracted to find the department, the 

domain of roll numbers is not atomic

• Doing so is a bad idea: leads to encoding of information in application 

program rather than in the database
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First Normal Form (1NF)

• Requirements

– No multivalued attributes

– Every attribute value is atomic

• E.g.,

– Fig. 1 is not in 1st Normal Form (multivalued attributes) 

– Fig. 2 is in 1st Normal form

• All relations should be in 1st Normal Form
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Figure 1

Figure 2

not in 1NF (multivalued attributes)

in 1NF
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Second Normal Form

• 2nd Normal Form

– 1NF 

– Every non-key attribute is fully functionally dependent on the 

ENTIRE primary key, i.e., no partial functional dependencies

• Partial functional dependency

– A function dependency in which one or more non-key attributes are 

functionally dependent on part (but not in all) of the primary key
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Functional Dependencies in Employee

EmpID CourseTitle DateCompletedSalaryDeptNameName

Dependency on the entire primary key

Dependency on only part of the primary key

EmpID, CourseTitle ➔ DateCompleted

EmpID ➔ Name, DeptName, Salary

As such, NOT in 2nd Normal Form!
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Decompose a Relation to 2nd Normal Form

• Decompose the relation into two separate relations

Both are full functional 
dependencies

EmpID SalaryDeptNameName

CourseTitle DateCompletedEmpID

Emp_t

Emp_Course_t
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Third Normal Form

• Requirements

– 2NF 

– No transitive dependencies 

• A transitive dependency is a functional dependency between two 

(or more) non-key attributes.
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Relation with Transitive Dependency

SALES relation
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Relation with Transitive Dependency

Cust_ID → Name
Cust_ID → Salesperson
Cust_ID → Region

All this is OK
(2nd NF)

BUT

Cust_ID → Salesperson → Region

Transitive dependency
(not 3rd NF)
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Relation with Transitive Dependency

Decompose the SALES relation
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Relations in 3NF

Now, there are no transitive dependencies…
Both relations are in 3rd NF

Cust_ID → Name

Cust_ID → Salesperson

Salesperson → Region
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Data Normalization

• 1st Normal Form

– No multivalued attributes, and every attribute value is atomic

– All relations are in 1st Normal Form

• 2nd Normal Form

– 1NF + every non-key attribute is fully functionally dependent on 

the ENTIRE primary key

– Decomposing the relation into two new relations

• 3rd Normal Form

– 2NF + no transitive dependencies

– Decomposing the relation into two new relations
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Other Normal Forms 

• Boyce-Codd NF

– All determinants are superkeys

• 4th NF

– No multivalued dependencies

• 5th NF 

– Join dependencies generalize MVDs

• Lead to the project-join normal form (PJNF), or the 5th NF

• A class of even more general constraints, leads to a normal form called 
domain-key normal form

• Problem with these generalized constraints:  are hard to reason with, and 
no set of sound and complete set of inference rules exists



80

Boyce-Codd Normal Form

• Given relation schema R and FDs F, R is BCNF if for every FD 𝜶 →

𝜷 in F+(𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹), at least one of the following holds:

– 𝜶 → 𝜷 is trivial (i.e., 𝜷 ⊆ 𝜶)

– 𝜶 is a superkey for R



81

Example

• R = (A, B, C), F = {A → B, B → C }, Key = {A}
– R is not in BCNF since B → C but B is not the key 

• Decomposition R1 = (A, B),  R2 = (B, C)
– R1 and R2 in BCNF

– Lossless-join decomposition

– Dependency preserving
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Testing for BCNF

• To check if a non-trivial dependency 𝜶 → 𝜷 in F+ causes a violation 
of BCNF
– compute 𝜶+ (the attribute closure of 𝜶), and 

– verify that it includes all attributes of R, i.e., a superkey of R

• Simplified test
– To check if a relation schema R is in BCNF, it suffices to check only 

the FDs F for violation of BCNF, rather than checking all dependencies 
in F+

– If none of the dependencies in F causes a violation of BCNF, then none 
of the dependencies in F+ will cause a violation of BCNF either
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Testing for BCNF (Cont.)

• Using only F is incorrect when testing a relation in a decomposition
of R

• E.g., consider R (A, B, C, D) with F = {A → B, B → C}
– Decompose R into R1(A,B) and R2(A,C,D) 

– Neither of the dependencies in F contain only attributes from (A,C,D)
so we might be mislead into thinking that R2 satisfies BCNF

– In fact, dependency A → C in F+ shows that R2 is not in BCNF
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Testing Decomposition for BCNF

• To check if a relation 𝑹𝒊 in a decomposition of 𝑹 is in BCNF
– Either test 𝑹𝒊 for BCNF w.r.t. the restriction of F to 𝑹𝒊 (that is, all 

FDs in F+ that contain only attributes from 𝑹𝒊)

– or use the original set of dependencies F that hold on R, but with the 
following test:

• for every set of attributes 𝜶 ⊆ 𝑹𝒊, check that 𝜶+ either includes no 
attributes of 𝑹𝒊 − 𝜶（要么不是决定属性）, or includes all attributes 
of 𝑹𝒊（要么是𝑅𝑖超键）.

• If the condition is violated by some 𝜶 → 𝜷 in F, the FD 𝜶 → (𝜶+ −
𝜶)⋂𝑹𝒊 can be shown to hold on 𝑹𝒊, and 𝑹𝒊 violates BCNF

• We use above dependency to decompose 𝑹𝒊
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BCNF Decomposition Algorithm

Note: each Ri is in BCNF, and decomposition is lossless-join
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Example

• Consider the relation scheme CTHRSG, where C=course, T=teacher, 
H=hour, R=room, S=student, and G=grade. The functional 
dependencies F we assume are:
– CS→G: each student has one grade in each course

– C→T: each course has one teacher

– HR→C: only one course can meet in a room at one time

– HS→R: a student can be in only one room at one time

– TH→R: a teacher can be in only one room at one time
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Decomposition Tree

CTHRSG
Key=HS

CS→G C→T
HR→C  HS→R

TH→R

CSG
Key=CS
CS→G

CTHRS
Key=HS
C→T

HR→C  HS→R
TH→R

CT
Key=C
C→T

CHRS
Key=HS

HR→C HS→R
CH→R

CHR
Key=HR或CH

HR→C或CH→R

CHS
Key=HS
HS→C

HSR
Key=HS
HS→R

or
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BCNF and Dependency Preservation

• R = (J, K, L), F = {JK → L, L → K}, two candidate keys = JK 
and JL

– R is not in BCNF

• Any decomposition of R will fail to preserve

– JK → L 或者 L → K

It is not always possible to get a BCNF decomposition that is 
dependency preserving
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Third Normal Form: Motivation

• There are some situations where 
– BCNF is not dependency preserving, and 

– Efficient checking for FD violation on updates is important

• Solution: define a weaker normal form, i.e., Third Normal Form
– Allows some redundancy

– But FDs can be checked on individual relations without computing a join

– There is always a lossless-join, dependency-preserving decomposition 
into 3NF
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Third Normal Form

• A relation schema R is in 3NF if for all 𝜶 → 𝜷 in F+ at least one of 
the following holds:
– 𝜶 → 𝜷 is trivial (i.e., 𝜷 ⊆ 𝜶)

– 𝜶 is a superkey for R

– Each attribute A in 𝜷 − 𝜶 is contained in a candidate key for R

(NOTE: each attribute may be in a different candidate key)

• If a relation is in BCNF, it is in 3NF (since in BCNF one of the 
first two conditions above must hold)

• Third condition is a minimal relaxation of BCNF to ensure 
dependency preservation
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3NF (Cont.)

• Example
– R = (J, K, L), F = {JK → L, L → K}, two candidate keys:  JK and JL

– R is in 3NF
JK → L JK is a superkey/ candidate key

L → K K is contained in a candidate key

– BCNF decomposition has  (JL) and (LK), and testing for JK → L 
requires a join

• There is some redundancy in this schema

• Equivalent to example:
Banker-schema = (branch-name, customer-name, banker-name)

banker-name → branch name,

branch-name, customer-name → banker-name
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Testing for 3NF

• Optimization: Need to check only FDs in F

• Use attribute closure to check for each dependency 𝜶 → 𝜷, if 𝜶 is a 
superkey.

• If 𝜶 is not a superkey, we have to verify if each attribute in 𝜷 is 
contained in a candidate key of R
– this test is rather more expensive, since it involve finding candidate keys

– testing for 3NF has been shown to be NP-hard

– Interestingly, decomposition into 3NF can be done in polynomial time 
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3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each FD → in Fc do
if none of the schemas Rj, 1  j  i contains  , 

then begin
i := i + 1;
Ri :=  

end

end
if none of the schemas Rj, 1  j  i contains a 
candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end 
return (R1, R2, ..., Ri)

The algorithm ensures that 
each relation schema 𝑹𝒊 is 
in 3NF, and decomposition 
is dependency preserving 
and lossless-join
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3NF Decomposition Example 1
• R<U, F>, U={A,B,C,D,E}, F={AB→CDE, AC→BDE, B→C, C→D, B→E}

– R is in which NF? Decompose R into 3NF, and the decomposition is 
dependency preserving and lossless-join

1) Fc={AC→B, B→CE, C→D};

2) Find candidate keys: AC、AB; 

• key-attributes are: A、B、C;

• for C→D, non-key attribute D is partial dependent on key AC, so R ∉ 2NF, R∈1NF.

3) Decompose R into 3NF：
• So decompose R into (Same LHS attributes): 

– U1={A,B,C}, F1={AC → B }

– U2={B,C,E}, F2={B → CE }

– U3={C,D},   F3={C → D }

• 𝝆={R1<U1,F1>, R2<U2,F2>, R3<U3,F3>}, the decomposition is dependency preserving. 
And candidate keys AC、AB are all in U1, so a row can be found as a1, a2, a3, a4, a5 for 
testing lossless-join form, so 𝝆 is lossless-join.
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3NF Decomposition Example 2

• R<U, F>, U={A,B,C,D}, F={A→C, C→A, B→AC, D→AC, BD→A}. 
– R is in which NF? Decompose R into 3NF, and the decomposition is dependency 

preserving and lossless-join

1) Fc={A → C, C → A, B → A, D → A}

2) Candidate keys of R：BD; key-attributes: B、D;
• For B→A and D→A, non-key attribute A is partial dependent on key BD, so R∉2NF, R∈ 1NF

3) Decompose R into 3NF：
• All attributes exist in F, and does not exist X→A ∈ F and XA=U

• So decompose R into (Same LHS attributes):
– U1={A,C}, F1={ A → C, C → A }

– U2={A,B}, F2={ B → A }

– U3={A,D}, F3={ D → A }

• 𝝆={R1<U1,F1>, R2<U2,F2>, R3<U3,F3>}, the decomposition is dependency preserving. 
But candidate key BD is not in any Ui, so τ =ρ ∪ {R*<X,Fx>} = ρ ∪ {R4<{B,D},Φ>}, 
and τ is the decomposition that is dependency preserving and lossless-join

• (ABCD)->(AC), (ABD) -> (AC), (AB), (AD), (BD)
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Example

• Relation schema:
Banker-info-schema = (branch-name, customer-name, banker-name, office-
number)

• The FDs for this relation schema are:
banker-name → branch-name, office-number
customer-name, branch-name → banker-name

• The key is:
{customer-name, branch-name}
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Applying 3NF to Banker-info-schema

• The for loop in the algorithm causes us to include the following 
schemas in our decomposition:
Banker-office-schema = (banker-name, branch-name, office-number)
Banker-schema = (customer-name, branch-name, banker-name)

• Since Banker-schema contains a candidate key for 
Banker-info-schema, we are done with the decomposition process
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Comparison of BCNF and 3NF

• It is always possible to decompose a relation into relations in 3NF 
and 
– the decomposition is lossless

– the dependencies are preserved

• It is always possible to decompose a relation into relations in BCNF
and 
– the decomposition is lossless

– it may not be possible to preserve dependencies.
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Comparison of BCNF and 3NF (Cont.)

• Example of problems due to redundancy in 3NF
– R = (J, K, L)

F = {JK → L, L → K}

• A schema that is in 3NF but not in BCNF has the problems of 
repetition of 
– information (e.g., the relationship l1, k1) 

– need to use null values (e.g., to represent the relationship l2, k2 where 
there is no corresponding value for J)

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2
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Design Goals

• Goal for a relational database design:
– BCNF

– Lossless join

– Dependency preservation

• If we cannot achieve this, we accept one of
– Lack of dependency preservation 

– Redundancy due to use of 3NF
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Design Goals (Cont.)

• Interestingly, SQL does not provide a direct way of specifying FDs 

other than superkeys.

– Can specify FDs using assertions, but they are expensive to test

• Even if we had a dependency preserving decomposition, using SQL 

we would not be able to efficiently test a FD whose left hand side 

is not a key.
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Testing for FDs Across Relations
• If decomposition is not dependency preserving, we can have an extra 

materialized view for each dependency 𝜶 → 𝜷 in Fc that is not 

preserved in the decomposition

• The materialized view is defined as a projection on 𝜶𝜷 of the join of 

the relations in the decomposition

• Many newer database systems support materialized views and 

database system maintains the view when the relations are updated.

– No extra coding effort for programmer
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Testing for FDs Across Relations (Cont.)

• The functional dependency 𝜶 → 𝜷 is expressed by declaring 𝜶 as a 

candidate key on the materialized view

• Checking for candidate key cheaper than checking 𝜶 → 𝜷

• BUT:

– Space overhead: for storing the materialized view

– Time overhead: Need to keep materialized view up to date when  relations 

are updated

– Database system may not support key declarations on materialized views
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Outline
• Features of Good Relational Designs

• Functional Dependency（函数依赖）

– Functional dependency: why and what? 

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

 Multivalued Dependencies* （多值依赖）

• Database Design Process
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Multivalued Dependencies

• There are database schemas in BCNF that do not seem to be 
sufficiently normalized 

• Consider a database 
classes(course, teacher, book)
such that (c, t, b)∈ classes means that t is qualified to teach c, and b is a 
required textbook for c

• The database is supposed to list for each course the set of teachers 
any one of which can be the course’s instructor, and the set of books, 
all of which are required for the course



106

• There are no non-trivial functional dependencies and therefore the relation is in BCNF

• Insertion anomalies – i.e., if Sara is a new teacher that can teach database, two tuples 
need to be inserted

– (database, Sara, DB Concepts) 

– (database, Sara, Ullman)

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi 
Jim 
Jim 

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Shaw
OS Concepts
Shaw

classes
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Multivalued Dependencies (Cont.)

• Therefore, it is better to decompose classes into:

course teacher

database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi 
Jim

teaches

course book

database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

We shall see that these two relations are in 4NF
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Multivalued Dependencies (MVDs)

• Let R be a relation schema and let 𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹 . The 
multivalued dependency 

𝜶 ↠ 𝜷

holds on R if in any legal relation r(R), for all pairs for tuples 𝒕𝟏 and 𝒕𝟐 in 
r such that 𝒕𝟏 𝜶 = 𝒕𝟐[𝜶], there exist tuples 𝒕𝟑 and 𝒕𝟒 in r such that:    
𝒕𝟏 𝜶 = 𝒕𝟐 𝜶 = 𝒕𝟑 𝜶 = 𝒕𝟒 𝜶
𝒕𝟑 𝜷 = 𝒕𝟏 𝜷
𝒕𝟑 𝑹− 𝜷 = 𝒕𝟐[𝑹 − 𝜷]
𝒕𝟒 𝜷 = 𝒕𝟐[𝜷]
𝒕𝟒 𝑹− 𝜷 = 𝒕𝟏[𝑹 − 𝜷]

• Why called ‘’multivalued dependency’’?
– because a value of𝜶 determine multiple values of𝜷
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Why Called Multivalued Dependencies?
• When we say 𝜶 ↠ 𝜷, it means that a value of𝜶 determine multiple 

values of 𝜷

We have: course ↠ teacher,   course ↠ book
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MVD (Cont.)

Tabular representation of 𝜶 ↠ 𝜷

Functional dependencies: equality-generating dependencies 相等产生依赖

Multivalued dependencies: tuple-generating dependencies 元组产生依赖
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MVD (Cont.)

• Properties of MVD

– Symmetry: if X↠Y then X↠Z, here Z=U-X-Y

– Transitivity: if X ↠ Y, Y ↠ Z, then X ↠ Z-Y

– If X ↠ Y, X ↠ Z, then X ↠ YZ

– If X ↠ Y, X ↠ Z, then X ↠ Y∩Z

– If X ↠ Y, X ↠ Z, then X ↠ Y-Z, X ↠ Z-Y

– …
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Example

• Let R be a relation schema with a set of attributes that are 
partitioned into 3 nonempty subsets.

Y, Z, W

• We say that Y↠Z (Y multi-determines Z)
iff for all possible relations r(R)
– < 𝒚, 𝒛𝟏, 𝒘𝟏 >∈ 𝒓 and < 𝒚, 𝒛𝟐, 𝒘𝟐 >∈ 𝒓 then

– < 𝑦, 𝑧1, 𝑤2 >∈ 𝑟 and < 𝑦, 𝑧2, 𝑤1 >∈ 𝑟

• Note that since the behavior of Z and W are identical it follows 
that Y↠ Z if Y↠W
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Example (Cont.)
• In our example:

– course ↠ teacher

– course ↠ book

• The above formal definition is supposed to formalize the notion that 
given a particular value of Y (course) it has associated with it a set 
of values of Z (teacher) and a set of values of W (book), and these 
two sets are in some sense independent of each other

• Note: 
– If Y→ Z  then  Y ↠ Z

– Indeed we have (in above notation) 𝒛𝟏 = 𝒛𝟐
The claim follows
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Use of Multivalued Dependencies

• We use MVDs in two ways: 

– 1. To test relations to determine whether they are legal under a given 

set of FDs and MVDs

– 2. To specify constraints on the set of legal relations.  We shall concern 

ourselves with relations that satisfy a given set of FDs and MVDs.

• If a relation 𝒓 fails to satisfy a given MVD, we can construct a 

relations 𝒓′ that does satisfy the MVD by adding tuples to 𝒓
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Theory of MVDs
• From the definition of multivalued dependency, we can derive the 

following rule:
– If 𝜶 → 𝜷, then 𝜶 ↠ 𝜷; That is, every FD is also a MVD

• The closure D+ of D is the set of all FDs and MVDs logically implied 
by D. 

• We can compute D+ from D, using the formal definitions of FDs and 
MVDs.

• We can manage with such reasoning for very simple MVDs, which 
seem to be common in practice

• For complex MVDs, it is better to reason about sets of dependencies 
using a system of inference rules
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Fourth Normal Form

• A relation schema R is in 4NF w.r.t. a set D of FDs and MVDs if for 

all MVDs in D+ of the form 𝜶 ↠ 𝜷, where 𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹, at least 

one of the following hold:

– 𝜶 ↠ 𝜷 is trivial (i.e., 𝜷 ⊆ 𝜶 or 𝜶 ∪ 𝜷 = 𝑹)

– 𝜶 is a superkey for schema R

• If a relation is in 4NF it is in BCNF
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Restriction of Multivalued Dependencies

• The restriction of  D to 𝑹𝒊 is the set 𝑫𝒊 consisting of

– All FDs in D+ that include only attributes of Ri

– All MVDs of the form

𝜶 ↠ 𝜷 ∩ 𝑹𝒊

where 𝜶 ⊆ 𝑹𝒊 and 𝜶 ↠ 𝜷 is in D+
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4NF Decomposition Algorithm
result: = {R};
done := false;
compute D+;
Let 𝑫𝒊 denote the restriction of D+ to 𝑹𝒊
while (not done) 

if (there is a schema 𝑹𝒊 in result that is not in 4NF) then
begin

let 𝜶 ↠ 𝜷 be a nontrivial MVD that holds on 𝑹𝒊 such that 𝜶 → 𝑹𝒊
is not in 𝑫𝒊, and 𝜶 ∩ 𝜷 = ∅; 

result :=  (result - 𝑹𝒊) ∪ ((𝑹𝒊 -𝜷) ∪ (𝜶, 𝜷)); 
end

else done:= true;

Note: each 𝑹𝒊 is in 4NF, and decomposition is lossless-join
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Example

 R =(A, B, C, G, H, I)

F ={ A →→ B

B →→ HI

CG →→ H }

 R is not in 4NF since A →→ B and A is not a superkey for R

 Decomposition

a) R1 = (A, B) (R1 is in 4NF)

b) R2 = (A, C, G, H, I)  (R2 is not in 4NF)

c) R3 = (C, G, H) (R3 is in 4NF)

d) R4 = (A, C, G, I)  (R4 is not in 4NF)

 Since A →→ B and B →→ HI, A →→ HI, A →→ I

e) R5 = (A, I)  (R5 is in 4NF)

f)R6 = (A, C, G)  (R6 is in 4NF)
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Further Normal Forms

• Join dependencies generalize MVDs
– lead to project-join normal form (PJNF) (also called fifth normal form) 
投影-连接范式

• A class of even more general constraints, leads to a normal form 
called domain-key normal form (DKNF) 域-码范式

• Problem with these generalized constraints:  are hard to reason with, 
and no set of sound and complete set of inference rules exists, hence 
rarely used
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Outline
• Features of Good Relational Designs

• Functional Dependency（函数依赖）

– Functional dependency: why and what? 

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

 Database Design Process
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Overall Database Design Process

• We have assumed schema R is given

– R could have been generated when converting E-R diagram to a set of 

tables

– R could have been a single relation containing all attributes that are of 

interest (called universal relation, 泛关系)

– Normalization breaks R into smaller relations and normal form
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ER Model and Normalization
• When an E-R diagram is carefully designed, identifying all entities 

correctly, the tables generated from the E-R diagram should not 
need further normalization

• However, in a real (imperfect) design there can be FDs from non-key 
attributes of an entity to other attributes of the entity

• E.g. employee entity with attributes department-number and 
department-address, and an FD 

department-number → department-address
– Good design would have made department an entity

• FDs from non-key attributes of a relationship set are possible, but 
rare
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Universal Relation Approach 泛关系

• Dangling tuples – Tuples that “disappear” in computing a join

– Let 𝒓𝟏(𝑹𝟏), 𝒓𝟐(𝑹𝟐), …, 𝒓𝒏(𝑹𝒏) be a set of relations

– A tuple 𝒕 of the relation 𝒓𝒊 is a dangling tuple if 𝒕 is not in the relation:

𝜫𝑹𝒊 ⋈ (𝒓𝟏 ⋈ 𝒓𝟐 ⋈ ⋯ ⋈ 𝒓𝒏)

• The relation 𝒓𝟏 ⋈ 𝒓𝟐 ⋈ ⋯ ⋈ 𝒓𝒏 is called a universal relation since it 

involves all the attributes in the “universe” defined by 𝑹𝟏 ∪ 𝑹𝟐 ∪⋯∪

𝑹𝒏

• If dangling tuples are allowed in the database, instead of decomposing 

a universal relation, we may prefer to synthesize a collection of 

normal form schemas from a given set of attributes.
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Universal Relation Approach

• Dangling tuples may occur in practical database applications

• They represent incomplete information 

• E.g., may want to break up information about loans into:

– (branch-name, loan-number)  

– (loan-number, amount) 

– (loan-number, customer-name)

• Universal relation would require null values, and have dangling tuples
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Universal Relation Approach (Cont.)

• A particular decomposition defines a restricted form of incomplete 
information that is acceptable in our database.
– Above decomposition requires at least one of customer-name, branch-name

or amount in order to enter a loan number without using null values

– Rules out storing of customer-name, amount without an appropriate loan-
number (since it is a key, it can't be null either!)

• Universal relation requires unique attribute names unique role 
assumption

• Reuse of attribute names is natural in SQL since relation names can be 
prefixed to disambiguate names
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Denormalization for Performance

• May want to use non-normalized schema for performance
– E.g., displaying customer-name along with account-number and balance

requires join of account with depositor

– Alternative 1:  Use denormalized relation containing attributes of 
account as well as depositor with all above attributes

• Faster lookup

• Extra space and extra execution time for updates

• Extra coding work for programmer and possibility of error in extra code

– Alternative 2: use a materialized view defined as
account ⋈ depositor

• Benefits and drawbacks same as above, except no extra coding work for 
programmer and avoids possible errors
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Other Design Issues
• Some aspects of database design are not caught by normalization

• Examples of bad database design to be avoided: Instead of 
earnings(company-id, year, amount), use 
– earnings-2000, earnings-2001, earnings-2002, etc., all on the schema 

(company-id, earnings).
• Above are in BCNF, but make querying across years difficult and needs a new 

table each year

– company-year(company-id, earnings-2000, earnings-2001, earnings-2002)
• Also in BCNF, but makes querying across years difficult and requires new 

attribute each year.

• Is an example of a crosstab (交叉表), where values for one attribute become 
column names

• Used in spreadsheets, and in data analysis tools
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Quiz
• Given the relational schema R<U, F>, U={A,B,C,D,E }, 

F={AC→BD, B → C, C →D, B → E}
a) Use Armstrong axioms and related rules to prove the functional 

dependency AC → E

b) Compute (A)+ and (AC)+

c) Find a canonical cover Fc of F

d) Find all candidate keys, and point out R is in which normal form

e) Decompose R into 3NF, which the decomposition is lossless-join and 
dependency preserving. 

f) Give related explanation or proof that the above decomposition is 
lossless-join and dependency preserving

g) *Decompose the relation into relations in BCNF
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Homework
• Further Reading

– Chapter 7

• Exercises

– 7.1, 7.2, 7.6

– Any two from (7.30， 7.31，7.32，7.33，7.34)

• Submission

– Deadline: April 23 , 2024
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End of Lecture 6
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