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Outline of the Course

* Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 1(Feb. 29) - Chl: Introduction - Lect.7 (May 2 -> Qpr'. 28) - Ch12/13:
. Storage systems & structures
Part 1 Relational Databases _ .
- Lect. 2 (Mar. 7) - Ch2: Relational model - Lect. 8 (May 10) - Ch14: Indexing
(data model, relational algebra)  Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 14) - Ch3: SQL (Introduction) - Lect.9 (May 17) - Ch15: Query processing
- Lect. 4 (Mar. 21) - Ch4/5: Intermediate and - Lect. 10 (May 24 ) - Ch16: Query
Advanced SQL optimization
& Par'1' 2 Database Design . Part 5 Transaction Management
Lect. 5 (Mar. 28) - Ch6é: Database design Lect. 11 (May 31) - Ch17: Transactions
based on E-R model - Lect. 12 (Jun. 7) - Ch18: Concurrency
- Apr. 4 (Tomb-Sweeping Day): no course control

- Lect. 6 (Apr. 11/18) - Ch7: Relational
database design

¥ [Mid*e"m exam: Apr. 25 ] Final exam: 13:00-15:00, Jun. 26
- 13: 00-15: 00, H3109

- Lect. 13 (Jun. 14) - Ch19: Recovery system




University Database

ID name dept_-name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Instructor table

00128
12345
19991
23121
44553
45678
54321
55739
70557
76543
76653
98765
98988

Zhang
Shankar
Brandt
Chavez
Peltier
Levy
Williams
Sanchez
Snow
Brown
Aoi
Bourikas
Tanaka

Comp. Sci.
Comp. Sci.
History
Finance
Physics
Physics
Comp. Sci.
Music
Physics
Comp. Sci.
Elge. Eng.
Elec. Eng.
Biology

ID name deEt_name tot_cred

102
32
80

110
56
46
54
38

0
58
60
98

120

Student table




University Database
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E-R Diagram for a Banking Enterprise
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The Banking Schema

branch = (branch_name, branch _city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account number, balance)

employee = (employee_id, employee_name, telephone_number, start_date)

dependent_name = (employee id, dname) (derived from a multivalued attribute)

account_branch = (account number, branch_name)
loan_branch = (loan_number, branch_name)

cust_banker = (customer_id, employee_id, type)
borrower = (customer_id, loan number)

depositor = (customer_id, account_number, access_date)
works_for = (worker_employee_id, manager_employee_id)

payment =(loan_number, payment number, payment_date, payment_amount)

savings_account = (account number, interest_rate)
checking_account = (account _number, overdraft_amount)




@ Features of Good Relational Designs

Functional Dependency (ER&L{k#Ef)

- Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

- Closure of attribute sets (BIEEAE)
Canonical cover (R/NEBE)
- Lossless-join decomposition (FoiRiEEzo i)
- Dependency preservation ({KEi{R:F)
Normalization (#84€) & Normal Forms (GB3{)
Multivalued Dependencies* (Z{E{Kk#f)
Database Design Process




Larger Relation Schema/EAHIEIY

inst_dept (ID, name, salary, dept_name, building, budget)
- Redundant (JU5R) : dept_name, building, budget
» Fudan's School of CS has about 200 faculty members and staffs
- Inconsistent (A~—2{) : dept_name, building, budget
- Insert failure: cannot insert a tuple without ID, name, salary
Functional dependency is needed
dept_name — budget
Decomposition
inst_dept
* instructor(ID, name, salary, dept_name)
- department(dept_name, building, budget)



Smaller Relation Schema/H/\BIHER,

| ID | name | street | city | salary |
57766 | Kim | Main | Perryridge | 75000
98776 | Kim North | Hampton 67000
employee
ID name name srreetl city ‘ salary
57766 | Kim Kim | Main | Perryridge | 75000
98776 | Kim Kim | North | Hampton 67000

\ natural join /

| ID | nare | street | city | salary |
57766 | Kim | Main_| Perryridge | 75000
57766 | Kim | North | Hampton 67000
98776 | Kim | Main | Perryridge | 75000
98776 | Kim | North | Hampton 67000

More tuples mean lossy decompositions




Good Relation Schema

RDB design is to find a "good” collection of schemas. A bad
design may lead to

- Repetition of information

- Inability to represent certain information
* e.g. representing a new department without faculty

Design goals

- Avoid redundant data

- Ensure that relationships among attributes are represented
- Ensuring no information loss

- Facilitate the checking of updates for violation of database
integrity constraints

10



Features of Good Relational Designs
< Functional Dependency (ERZI{#&Kif)

» Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

- Closure of attribute sets (BIEEAE)
Canonical cover (R/NEBE)
- Lossless-join decomposition (FoiRiEEzo i)
- Dependency preservation ({KEi{R:F)
Normalization (Migft) & Normal Forms (GB3l)
Multivalued Dependencies* (Z{E{Kk#f)
Database Design Process
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- Consider the relation schema:

lending_schema = (branch_name, branch_city, assets, customer_name,
loan_number, amount)

customer- | loan-
branch-name | branch-city assets | name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge | Horseneck | 1700000 | Hayes L-15 1500
° Redundqncy Downtown | Brooklyn 9000000 | Jackson L-14 1500

- Data for branch_name, branch_city, and assets are repeated for each
loan that a branch makes

- Waste space, complicate updating, and introduce possibility of
inconsistency of assets value

«  Null values

- Cannot store information about a branch if no loans exist

- Can use null values, but they are difficult to handle "



Decompose the relation schema lending_schema into:

branch_schema = (branch_name, branch_city, assets)
loan_info_schema = (customer_name, loan_number, branch_name, amount)

All attributes of an original schema R must appear in the
decomposition (R, R;):
R = R1 U RZ

Lossless- join decomposition (FoIRIEZDHR):
- For all possible relations  on schema R: r = Iz, (1) ™ Iy (1)

13



Example of Non Lossless-Join Decomposition

Decomposition of R = (A, B, C)

- Ry =(A0), R, = (B,C)

=X R R >

= N = 0 =

W

lossy
Iy (1) g c(r)
A C B C
a 1 1 1
B 1 2 1

DI™ KR R >

Nf+= N =
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Goal - Devise a Theory for the Following

Decide whether a particular relation R is in good form

In the case that R is not in "good"” form, decompose it into a set of

relations {R{,R,, ..., R,,} such that

- each relation is in good form
- the decomposition is a lossless- join decomposition (FoiREz %)
- the decomposition is dependency-preservation ({R¥FE7)

Our theory is based on:

- functional dependencies (ERZI{#&KR)
- multi-valued dependencies

15



Functional Dependencies (ER&%{#H)

Constraints on the set of legal relations

Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes

- Or a set of attributes are determined by another set of attributes

A functional dependency is a generalization of the notion of a key

- Or key is a specific form of functional dependency

16



Functional Dependencies (Cont.)

Let R be a relation schema, «a S Rand B S R

The functional dependency a — B holds on R

- for ANY legal relations r(R), whenever any two tuples t; and t; of r
agree on the attributes «, they also agree on the attributes g

- ie., tyla] = tz[a] = £4[B] = t,[B]
Eg..

- Consider r(4, B) with the following instance of r

1 4
1 5
3 7

- the A - B does NOT hold, but B - A does hold

17



Functional Dependencies (Cont.)

e K is a superkey for relation schema R iff K > R

e K is acandidate key for R iff
- K-> R, and
- NoacK, a—>R
FDs allow us to express constraints that cannot be expressed using

superkeys. Consider the schema:
loan_info_schema = (customer_name, loan_number, branch_name, amount)
We expect this set of FDs to hold:

loan_number - amount
loan_number — branch_name

but would not expect the following to hold:
loan_number — customer_name

18



Applications of Functional Dependencies

We use functional dependencies to:

- test relations to see if they are legal under a given set of functional

dependencies,

- specify constraints on the set of legal relations

Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does not
holds on all legal instances.

- For example, a specific instance of loan_schema may satisfy

loan_number — customer _name
19



Functional Dependencies (Cont.)

A functional dependency is trivial (EFLRY) if it is satisfied by all
instances of a relation, e.q.,

customer_name, loan_number — customer_name

customer_name — customer_name

- Ingeneral, a - B is trivial if S a

Full dependency and partially dependency

- B is fully dependent on «a, if there is no proper subset a’ of a such

that a’ - B. Otherwise, B is partially dependent on a

20



Features of Good Relational Designs
< Functional Dependency (ERZI{#&Kif)

- Functional dependency: why and what?

> Closure of functional dependency (EREUKEAE)
- Closure of attribute sets (BIEEAE)

- Canonical cover (R/NBE)

- Lossless-join decomposition (FoiRiEEzo i)

- Dependency preservation ({KEi{R:F)
Normalization (Migft) & Normal Forms (GB3l)
Multivalued Dependencies* (Z{E{Kk#f)
Database Design Process

21



Closure of a Set of Functional Dependencies

Given a set F of FDs, there are some other FDs that are logically
implied (Z5§E=iH) by F

- Eg., if A- Band B - C, then we can infer that A - C

- The set of all FDs logically implied by F is the closure (FIf2) of F

- We denote the closure of F by F*
Can find all of F* by applying Armstrong's Axiom () :

- Ifpca, thena—-p (reflexivity: BRE)

- If a> B, then ya - ypB (augmentation:igJ &)

- Ifa->p,and B>y, thena—-y (transitivity {&£iB1E)
These rules are (IFfiEH=R)

- sound (generate only FDs that actually hold) and

- complete (generate all FDs that hold).

22



Closure of Functional Dependencies (Cont.)

We can further simplify manual computation of F* by using the
following additional rules.
- If a > B holds and a — y holds, then a = By holds (union: SFFRN))
- If a - By holds, then a » B holds and a - y holds (decomposition: 3%
F )
- If a - B holds and yB — & holds, then ay — & holds (pseudotransitivity
. (AtEIEFIN)

The above rules can be inferred from Armstrong’s axioms.

23



e R=(AB,CGHI F={A-BA-C(CCG-HCG~-I,B—- H}
+  Some members of F*
- A-H
- by transitivity fromA - Band B - H
- AG -1

- by augmenting A - C with G to get AG — CG and then transitivity
with CG - I

- CG - HI
- from CG — H and CG — I: union rule can be inferred from
- definition of functional dependencies, or

- augmentation of CG — I to infer CG — CGI, augmentation of
CG — H to infer CGI - HI, and then transitivity

24



Procedure for Computing F*

To compute the closure of a set of FDs F:
F*=F

apply reflexivity (H &%) /* Generates all trivial dependencies */
repeat
for each FD f in F*
apply augmentation (34 4&) rules on f

add the resulting FDs to F*
for each pair of FDs f{ and f, in F*

if f1 and f, can be combined using transitivity (&%)
then add the resulting FD to F*
until F* does not change any further

NOTE: We will see an alternative procedure for this task later

25



R(X.Y.,Z), F = {X—>Y, Y=>Z}, F*?

F =

xt1 o, ([ydo, [z} o, (XY}, (X2} o, [vZFo, (xyZ} o,
x+x, |y-ly, |z+z, |xybx, |xz+x, |vzdy, XYZ1-X,
x+ty, |y-iz, xyty, |xzty, |yz+z Xyz1-,
x+z, |y-lyz, xy+z, |xztz, |yz+vz, |xvz+z
X—+XY, Xyfxy, |xzbxy, XYZ1-XY,
x-+xz, xytyz, |xzi-xz, xyz}-yz,
x+yz, xytxz, | xzbvyz, xyz}-xz,
X-+xyz, xy+xvz, | xzh-xyz, XYZ}-XYZ)

F={X—A1, ... , X—~An}, to compute F*is a NP problem 26



Features of Good Relational Designs

< Functional Dependency (ERZI{#&Kif)

- Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

> Closure of attribute sets (BIHEFE)

- Canonical cover (R/NBE)

- Lossless-join decomposition (FoiRiEEzo i)

- Dependency preservation ({KEi{R:F)
Normalization (Migft) & Normal Forms (GB3l)
Multivalued Dependencies* (Z{E{Kk#f)
Database Design Process

27



Closure of Attribute Sets

Given a set of attributes a, define the closure of a under F (denoted

by a*) as the set of attributes that are functionally determined by «
under F:

a->pBisin FFf  gcat

Algorithm to compute a™ :
result:=a;
while (changes to result) do
foreach f -y inF do
begin
if B Sresult, then result:=result U y
end

28



Example of Attribute Set Closure

Given R<U,F>, U = {A,B,C,D,E}, F={AB—C,B—D,C—E ,EC—B,AC—B};
Compute: (AB):*,(AC):*,(EC):*

XO={A, B);

First loop:

XW): for each FD in F, find FDs that the left hand side(LHS) is A,B or AB, then
AB—C,B—D, and X(I={A,B}U{C,D}={A,B,C,D};

Second loop:

XM2XO0), find FDs that the left hand side is the subset of {ABCD}, then
AB—C,B—D,C—E,AC—B, and X®=XMU{C,D, E,B}={A,B,C,D,E};

X@=U, all attributes are in X, the attribute set closure computing is end.
So (AB):* = {A,B,C,D,E}.

(AC)* = 22?2  (EC)* = 222

(AC)* = {A,B,C,D.E}; (EC)" = {B.C,D.E}

Note: WLE)EHEAERBUKIE T HTRTL, WTHEBHE Bkhy, HMAR?
29



Example of Attribute Set Closure

e R=(AB,CGHI, F={A-BA-C(CC(CG- HCG~-IB - H}
Calculate (AG)*
- result = AG
- result = ABCG (A- Cand A - B)
- result = ABCGH (CG - H and CG S ABCG)
- result = ABCGHI = R (CG -» I and CG € ABCGH)

Is AG a candidate key?

- Is AG a superkey?
+ Does AG - R? == Is (AG)*'2 R
- Is any subset of AG a superkey?
- Does A—->R? == Is (A)"2 R (A)*=ABCH
- Does G- R? == Is(G)'2 R (=6 MEREHEA. 6)

30



Applications of Attribute Closure

Testing for superkey

Testing functional dependencies

- To check if a functional dependency a — B holds (or, in other words,
isin F*), just check if pca”

- Compute a™ by using attribute closure, then check if it contains g
- A simple and cheap test

Computing closure of F

- For each y € R, we find the closure y*, and for each S € y*, we
output a functional dependency y — S

31



Features of Good Relational Designs

< Functional Dependency (ERZI{#&Kif)

- Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

- Closure of attribute sets (BIEEAE)

> Canonical cover (/\EB)

- Lossless-join decomposition (FoiRiEEzo i)

- Dependency preservation ({KEi{R:F)
Normalization (Migft) & Normal Forms (GB3l)
Multivalued Dependencies* (Z{E{Kk#f)
Database Design Process
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Canonical Cover (IENIES/RINEE)

Sets of FDs may have redundant FDs that can be inferred from
the others

- Eg.,A- Cisredundantin:. {A->B, B—>C, A- (}
- Parts of a FD may be redundant

+ E.g.,onRHS: {A—> B, B— C, A— CD} can be simplified to
{A-B, B->(C, A- D}

+ E.g.,onLHS: {A > B, B C, AC - D} can be simplified to
{A-B, B-C, A- D}

Intuitively, a canonical cover of F is a "minimal” set of FDs
equivalent to F, having no redundant FDs or redundant parts of FDs

33



Extraneous Attributes (FoXEBIE)

Consider aset F of FDsandthe FDa - B inF

- Attribute A is extraneous (FoXH)) in a (/=) if A € a and F logically
implies (F — {a - B}) U {(a — 4) - B}
- Afttribute A is extraneous in g (&afll) if A € B and the set of FDs
(F—{a - BYH) u{(a~- (B—A)} logically implies F
Note: implication in the opposite direction is trivial in each of the
cases above
Example: Given F = {A - C,AB - C}

- B is extraneous in AB — C because {4 - C,AB — C} logically implies A —
C (i.e., the result of dropping B from AB — C)

Example: Given F = {A - C,AB — CD}
- C is extraneous in AB — CD, it can be inferred from = {A - C,AB — D}

34



Testing if an Attribute is Extraneous

Consider a set F of FDs and a— in F.

To test if attribute Aca is extraneous in o (ZMILHS)
1. compute ({0} - A)" using the dependencies in F
2. check that ({0} - A)" contains B; if it does, A is extraneous

To test if attribute Aep is extraneous in B (A MIRHS)
1. compute o using only the dependencies in F' = (F - {a—B})

U {o—>(B - A)},

2. check that o* contains A; if it does, A is extraneous

35



Canonical Cover

A canonical cover for F is a set of FDs F, such that
— F logically implies all dependencies in F., and

— F_.logically implies all dependencies in F, and

- No FD in F,. contains an extraneous attribute, and

- Each left side of FD in F, is unique, i.e., there are no two FDs a; - f3;
and a, — B, such that a; = a,

+  To compute a canonical cover for F:
repeat
use the union rule to replace any dependencies in F
a; = By and ay = B, with ay - By B
find a FD a — B with an extraneous attr. either in a or in

If an extraneous attr. is found, delete it from a -
until F does not change

36



Example of Computing a Canonical Cover

R=(A, B, €) F={A>BC, B»C, A—>B, AB>C}, Fc=?
- Combine A—BC and A—B info A—>BC

- Set is now {A—>BC, B»>C, AB->C)
- A is extraneous in AB—>C

- Check if the result of deleting A from AB—C is implied by the
other dependencies B—~C

- Set is now {A—>BC, B—C}
- C is extraneous in A—>BC

- Check if A—>C is logically implied by A—»B and the other
dependencies B—~C

- The canonical cover is: Fc= {A—>B, B—>C}

* A canonical cover might not be unique. For {4 - C,B - AC,C - AB},
F,.={A-CB-CC-AB}orF.,={A- C,B - AC,C - B}

37



Example of Computing a Canonical Cover

R<U,F>, U=(X,Y,Z, W},
F={W—Y,Y—W,X—~WY,Z—-WY,XZ—~W}, F_?

(1) F={W—>Y,Y—>W,X—»W,X—»Y,Z;W,Z—»Y,*Z//W}

(2) For LHS, F={w—»y,Y—»w,x/(w,x\/,z7W,z\Y}

(3) Delete redundant FDs,F={W—=Y,Y—=W X—-Y,Z—Y}

Fc = (W—=Y,Y=W,X~Y,Z—Y}

or Fc = {(W—Y,Y—W,X—~W,Z—~W}

38



Example of Computing a Canonical Cover

F = {A>B, B—~A, B—~C, A—~C, C—~A}
F.,= {A—B, B—~C, C—~A}

F..= {A—B, B—~A, A—~C, C—A}

F.,» F., are all canonical covers for F

So, a canonical cover might not be unique

39



More Examples

R<U,F>, U={A,B,C,D,E, G},
F={AB—C, C—~A, BC—~D, ACD—B, D—EG, BE—~C, C6—BD, CE—AG},
Compute (AB)*, (AC)*, (CD)*, Fc

(AB)*={A,B,C,D,E,6}=U, (AC)* ? (CD)* ?

(AC)*={A,C}, (CD)*={A,B,C,D,E,6}=U
Fc={AB—C,C—~A,BC—~D,cD—B,D—~E,D—~6,BE~C,C6—~D,CE—~G)
(€6)*={A.B,C.D,E,G}=U, (CE)*={A,B,C,D,E,G}=U

40



Find Candidate Keys

* For R(A4,A,,...,A,;) and FDs in F, all attributes can be
classified into 4 types:

- L: only exists in LHS
- R: only exists in RHS
- N: not exists in either LHS or RHS

- LR: exists in LHS and RHS both

41



Find Candidate Keys (Cont.)

Algorithm: find candidate keys for R
* Input: Rand its FDs set F

*  Output: All candidate keys for R

(1) Classify all attributes into two parts: X represents for L and N types, Y for LR type

(2) Compute X", if X* contains all attributes of R, then X is the only candidate key for
R, then goes to (5). otherwise goes to (3)

(3) Take attribute A from Y, compute (XA)*. If (XA)" contains all attributes of R, then
XA is a candidate key for R. Then take another attribute from Y, continue with the
process until all attributes in Y are tested

(4) If all candidate keys are found in step (3), then goes to (5); otherwise take 2 or 3 or
more attributes from Y, and compute the corresponding attribute closure (the attribute
group should not contain any candidate keys already found), till the attribute closure
contains all attributes of R

(5) Finished, and output the result
42



Find Candidate Keys (Cont.)

Given R<U, F>, U={X, Y, Z, W}, and F={W—=Y, Y=W, X—=WY,
Z—~WY, XZ—W}, find all candidate keys of R

a) F.= {W—Y, V=W, X—Y, Z—~Y}
b) XLN: XL: XZ, yLR: YW

c) X\n'={XY.ZW}=U, so(XZ) is the only candidate key of R

43



Find Candidate Keys (Cont.)

Given R<U,F>, U={A,B,C,D}, and F={AB—C, C—~D, D—A}, find all
candidate keys of R

a) F.= {AB—C, C~D, D~ A}
b) XLN: XL: B, yLR: ACD
c) XN ={B}zU

d) (AB) = {ABCD} = U, (BC) = {ABCD} = U, (BD) = {ABCD} = U, then (AB).
(BC). (BD) are all candidate keys of R

44



Find Candidate Keys (Cont.)

Given R<U F>, U={OBISQD}, F={s—D, D—S,I—B,B—~I, B—~0, O—B},
find all candidate keys of R

MDF={?}

@)Xz ? ) Y= ?

() X ={? }=0rzU?

4) ...

candidate keys of R ?

(QSO). (QDO). (QSB). (QDB). (QSI). (QDI)

45



Find Candidate Keys (Cont.)

+  Given R<U F>, U={OBISQD}, F={S—D, D—S,I—8B,B—~I, B—~0, O—B},
find all candidate keys of R
(1) Fe={5—D, D—S,I—-B,B—~I,B—~0, O—B}=F
(2) X .= Q, Y p= SDBIO
(3) Xn={Q} #U
(4)(QS)={QSD}.(QD)={QSD}.(QB)={QBIO}(QI)={QBIO}(QO)={QBIO}
zU
(QSO)"» (QSB)*~ (QSI)". (QSD)" -+ (QDO)*. (QDB)*~ (QDI)* -+ (QDS)"s
(QBO)*+ (QBI). (QBS)"» (QBD)"~ (QIO)*\ (QIB)*\ (QSI)"s (QID)" -
(QOB)*+ (QOI)"s (QOS)» (QOD)" »
candidate keys of R:
(QSO). (QSB). (QSI). (QDO). (QDB). (QDLI)
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Features of Good Relational Designs

< Functional Dependency (ERZI{#&Kif)

- Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

- Closure of attribute sets (BIEEAE)

- Canonical cover (R/NBE)

> Lossless-join decomposition (FoiRpkEniE)

- Dependency preservation ({KEi{R:F)
Normalization (Migft) & Normal Forms (GB3l)
Multivalued Dependencies* (Z{E{«#)
Database Design Process
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Goals of Normalization

Decide whether a particular relation R is in good form

In the case that R is not in "good” form, decompose it into a set
of relations {R,,R,,...,R,} such that

- each relation is in good form

- the decomposition is a lossless-join decomposition
- the decomposition is dependency-preservation

Our theory is based on:
- functional dependencies
- Multi-valued dependencies
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Decompose the relation schema Lending_schema into:
Branch_schema = (branch_name, branch_city,assets)
Loan_info_schema = (customer_name, loan_number,
branch_name, amount)
All attributes of an original schema (R) must appear in the
decomposition (R;, R,):
R =R, UR,
Lossless- join decomposition.For all possible relations r on schema R
r = Ilxy (r) >< Il (P)
Theorem: A decomposition of R into R; and R, is lossless join iff at
least one of the following dependencies is in F*:
- RiNnR, > R
- RiNR, >R,
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Example of Non Lossless-Join Decomposition

Decomposition of R = (A, B, C), F={A > C, B— C)

RI = (A,C), R2 = (B.C) R, = (A.B) R, = (B,C)?
r lossy 1,c(r) M () M, 5(7) lossless
A B C A C B ¢ A B
a 1 1 o 1 1 1 a 1 Rl a RZ - RZ
p 1 1 B 1
* Iac (r) X TIgc (1) [ag (1) X IIgc (1)
A B C r
Ri "R, > R ? a 1 1 A B C
Rl M RZ —> RZ ? a 2 1 a 1 1
g 1 1 a 2 1
g 2 1 g 1 1

50



R = (A, B, C)
F={A—-> B, B> ()

- Can be decomposed in two different ways
R, =(A B), R,=(8B O
- Lossless-join decomposition:
R, "R, ={B} and B —» BC
- Dependency preserving
R =(A, B), R;=(A C)
- Lossless-join decomposition:
Ri "R, ={A} and A > AB
- Not dependency preserving
(cannot check B — € without computing R; > R,)
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O Given R<U,F>, U={A,B,C,D,E}, F={AB—C, C—D, D—E}, and a
decomposition p of R into:
R1(A,B,C), R2(C,D), R3(D,E).
p is a lossless-join decomposition or a lossy one?
- (AB,C, D, E)->(A, B, C, D) +(D, E) (LID)

- (A,B,C,D) -> (A,B,C) + (C, D) (LID)
- pis LID
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Test for Lossless-join Decomposition

Input: R< U,F >, U ={A4,4,,..,A,}, F, adecomposition of R: p = {R; <
U1,F1 >,R2 < Uz,Fz >, ...,Rk < UkrFk >}
Output: p is a lossless-join decomposition or a lossy one

(1) Construct a table L with k rows and n columns, and each column corresponds to an
attribute 4;(1 < j < n), and each row corresponds to a schema R;(1 <i < k). If A;isin

R; (A; € R;), then fill the form with a; at L;;, otherwise fill it with b; ;.

(2) Regard table L as a relation on schema R, and check for each FD in F whether the
FD is satisfied or not. If the FD is not satisfied, rewrite the table as:

- ForaFDinF: X—=Y, if t[x1]=t[x2], and t[y1]=zt[y2], then rewrite y with the same
value;

* If thereisana; fory, then anothery is set o a;;
* If there is not an a;, then use one b;; to replace the othery;
- Till no changes occur on form L

(3) If there is a row of all a; (i.e. aja; ... a,), then p is a lossless- join decomposition.
Otherwise, p is a lossy decomposition. 53



Given R<U,F>, U={A,B,C,D,E}, F={AB—C, C—D, D—E},anda
decomposition p of R into: R1(A, B, C), R2(C, D), R3(D, E).p is a
lossless- join decomposition or a lossy one?

(1) First, construct a table as:

R1(A,B,C)| a, a, | a3 | by, | bys
R2(C.D) | by | by, | a3 | a, | bas
R3(D, E) b31 b32 b33 Qa, as
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Example (cont.)

(2) For AB—~C in F, no change occurs; for C—D, rewrite b4 with ay,
and for D—E, rewrite b5 and b, as as. Then we have a row as: a4,
a,, az, a,, as. The decomposition of R intfo R1, R2, and R3 is a
lossless- join one.

R1(A.B.C)

M W“s \

R2(C,D)
R3(D,E)
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Example of Non Lossless-Join Decomposition

Decomposition of R = (A, B, C), F={A > C, B— C)

RI = (A,C), R2 = (B.C) R, = (A.B) R, = (B,C)?
r lossy 1,c(r) M () M, 5(7) lossless
A B C A C B ¢ A B
a 1 1 o 1 1 1 a 1 Rl a RZ - RZ
p 1 1 B 1
* Iac (r) X TIgc (1) [ag (1) X IIgc (1)
A B C r
Ri "R, > R ? a 1 1 A B C
Rl M RZ —> RZ ? a 2 1 a 1 1
g 1 1 a 2 1
g 2 1 g 1 1
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R = (A, B, C)
F={A—-> B, B> ()

- Can be decomposed in two different ways
R, =(A B), R,=(8B O
- Lossless-join decomposition:
R, "R, ={B} and B —» BC
- Dependency preserving
R =(A, B), R;=(A C)
- Lossless-join decomposition:
Ri "R, ={A} and A > AB
- Not dependency preserving
(cannot check B — € without computing R; > R,)
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Features of Good Relational Designs
< Functional Dependency (ERZI{#&Kif)

- Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

- Closure of attribute sets (BIEEAE)
Canonical cover (R/NEE)
- Lossless-join decomposition (FoiRiEEzo i)
> Dependency preservation (#KEi{FRF)
Normalization (#84€) & Normal Forms (GB3{)
Multivalued Dependencies* (Z{E{Kk#f)
Database Design Process
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Normalization using Functional Dependencies

When we decompose a relation schema R with a set of FDs F into
Ry, R,,.., R, we want
- Lossless- join decomposition: Otherwise decomposition would result in
information loss
- No redundancy: The relations R; preferably should be in either BCNF
or 3NF
- Dependency preservation: Let F; be the subset of dependencies F*
that include only attributes in R;
e (FLUF,U---UF,)*=F"
* Otherwise, checking updates for violation of FDs may require computing
joins, which is expensive
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Testing for Dependency Preservation

To check if FD a — B is preserved in a decomposition of R into Ry,
R;,.., R, we apply the following simplified test

result = a
while (changes to result) do
for each R; in the decomposition
t = (result n R;) N R;
result = result ut
- If result contains all attributes in B, then the functional dependency a — g is
preserved
We apply the test on all dependencies in F to check if a decomposition
is dependency preserving

This procedure takes polynomial time, instead of the exponential time
required to compute F* and (F{UF, U ---UF,)"
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e R=(AB,(C), F={A- B,B - (}
- Can be decomposed in two different ways

* Ry =(AB), R, =(B,()
- Lossless-join decomposition: Ry N R, = {B} and B = C
- A->B, B> C,TestA->(C?
- Dependency preserving

* Ri=(AB), R, =(40)
- Lossless-join decomposition: Ry "R, = {A} and A > B
- A-> B, A-> C,check B> C

- Not dependency preserving
(cannot check B — C without computing Ry x R;)
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Features of Good Relational Designs
Functional Dependency (ER&N{&ER)
- Functional dependency: why and what?
- Closure of functional dependency (RREUKFRIAIEL)
- Closure of attribute sets (EBMH&EFAR)
- Canonical cover (R/NBE)
- Lossless-join decomposition (FoiRiEEzo i)
- Dependency preservation ({KEi{R:F)
= Normalization (M8ft) & Normal Forms GEIV)
Multivalued Dependencies* (Z{Ef«ii)
Database Design Process
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Data Normalization GISE{L)

The process of decomposing relations with anomalies to produce
smaller and well-structured relations

To validate and improve a logical design so that it satisfies certain
constraints that avoid unnecessary duplication of data

The problems of having duplication of data
- Waste of space
- Difficulty in consistency control
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Well-structured Relations

A relation that contains minimal data redundancy and allows users to
insert, delete, and update rows without causing data inconsistencies

Goal is to avoid anomalies

- Insertion Anomaly - adding new rows forces user to create duplicate
data

- Deletion Anomaly - deleting rows may cause a loss of data that would be
needed for other future rows

- Moadification Anomaly - changing data in a row forces changes to other
rows because of duplication

General rule of thumb: a table should not pertain to
more than one entity type
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Steps in
Normalization

Table with
multivalued
atributes

First
norrmal
form

normail
form

Fiffth
mormal
form

Remowe
muitivalued
attributes

Remowe
partial
dependencies

Remowe
transitive
dependencies

Remowe remaining
anomalies resulting
from functional
dependencies.

Remowe
multivalued
dependencies

Remowve
remaining
anomalies
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Atomic Domains and First Normal Form

Domain is atomic if its elements are considered to be indivisible
units
- attributes do not have any substructure

A relational schema R is in 1NF if the domains of all attributes of

R are atomic

Non-atomic values complicate storage and encourage redundant

storage of data

- E.g. composite attribute/ multivalued attributes
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First Normal Form (1NF, Cont.)

Atomicity is actually a property of how the elements of the domain are used
- E.g. Strings would normally be considered indivisible

- Suppose that students are given roll numbers which are strings of
the form 0372001

- If the first four characters are extracted to find the department, the

domain of roll numbers is not atomic

» Doing so is a bad idea: leads to encoding of information in application

program rather than in the database
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First Normal Form (1NF)

Requirements
- No multivalued attributes
- Every attribute value is atomic

Eg..
- Fig. 1is not in 1st Normal Form (multivalued attributes)
- Fig. 2 is in 1st Normal form

All relations should be in 1st Normal Form
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- Figure 1 not in INF (multivalued attributes)
Emp_ID Name Dept_MName Salary Course_Title Date_Completed
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X
urveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X
110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/200X
C++ 4/22/200X
190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000 SPSS 6/16/200X
Java B8/12/200X
- Figure 2 in INF
EMPLOYEE2
Emp_ID Name Dept_MName Salary Course_Title Date_Completed
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X%
110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/200%
110 Chris Lucero Info Systems 43,000 C+ 4/22/200X
190 Lorenzo Davis Finance 55,000
180 Susan Martin Marketing 42,000 SPSS 6/19/200X
150 Susan Martin Marketing 42,000 Java 8/12/200X
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Second Normal Form

2" Normal Form
- INF

- Every non-key attribute is fully functionally dependent on the
ENTIRE primary key, i.e., no partial functional dependencies

Partial functional dependency

- A function dependency in which one or more non-key attributes are

functionally dependent on part (but not in all) of the primary key
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Functional Dependencies in Employee

Dependency on the entire primary key

v
ID | CourseTitle| Name |DeptName |Salary |DateCompleted

E

Dependency on only part of the primary key

EmpID, CourseTitle & DateCompleted
EmpID & Name, DeptName, Salary

As such, NOT in 2 Normal Form!
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Decompose a Relation fo 2nd Normal Form

Decompose the relation into two separate relations

Both are full functional

l l l dependencies
Emp_t
EmpID | Name | DeptName | Salary

Emp_Coursh

EmpID | CourseTitle| DateCompleted

A
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Third Normal Form

Requirements
- 2NF

- No transitive dependencies

A transitive dependency is a functional dependency between two

(or more) non-key attributes.
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Relation with Transitive Dependency

SALES

Cust_ID Name Salesperson Region
8023 Anderson Smith South
9167 Bancroft Hicks West
7924 Hobbs Smith South
6837 Tucker Hernandez East
8596 Eckersley Hicks West
7018 Arnold Faulb North

SALES relation
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Relation with Transitive Dependency

v

Cust_ID

Name

Salesperson

Region

t

)

)

Cust_ID > Name
Cust_ID -> Salesperson
Cust_ID - Region

Al this is OK
(2™ NF)

Cust_ID - Salesperson > Region

Transitive dependency

BUT

(not 34 NF)
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Relation with Transitive Dependency

SALEST SPERSON

Cust_ID Name Salesperson Salesperson Region
8023 Anderson Smith Smith South
9167 Bancroft Hicks Hicks West
1924 Hobbs Smith Hernandez East
6837 Tucker Hernandez Faulb North
8596 Eckersley Hicks
7018 Amold Faulb

Decompose the SALES relation
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Relations in 3NF

SPERSON

Salesperson Region Salesperson > Region
SALES1 ~

Cust_ID Name Salesperson

Cust_ID > Name
Cust_ID - Salesperson

Now, there are no transitive dependencies...
Both relations are in 3" NF
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Data Normalization

1st Normal Form

- No multivalued attributes, and every attribute value is atomic
- All relations are in 1st Normal Form

2nd Normal Form

- INF + every non-key attribute is fully functionally dependent on
the ENTIRE primary key

- Decomposing the relation into two new relations

3rd Normal Form
- 2NF + no transitive dependencies
- Decomposing the relation into two new relations
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Other Normal Forms

Boyce-Codd NF

- All determinants are superkeys

4th NF

- No multivalued dependencies

5th NF

- Join dependencies generalize MVDs

* Lead to the project-join normal form (PINF), or the 5™ NF

A class of even more general constraints, leads to a normal form called
domain-key normal form

Problem with these generalized constraints: are hard to reason with, and
no set of sound and complete set of inference rules exists

79



Boyce-Codd Normal Form

Given relation schema R and FDs F, R is BCNF if for every FD a —
B inF*(e¢ € R and B < R), at least one of the following holds:

- a— B is trivial (i.e., B S a)

- «a is a superkey for R
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R=(A, B, C),F={A—>B, B> C} Key={A}
- R is not in BCNF since B — C but B is not the key

Decomposition R, = (A, B), R, = (B, C)
- R;and R, in BCNF

- Lossless-join decomposition

- Dependency preserving
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Testing for BCNF

To check if a non-trivial dependency a — B in F* causes a violation
of BCNF

- compute a® (the attribute closure of a), and

- verify that it includes all attributes of R, i.e., a superkey of R

Simplified test
- To check if a relation schema R is in BCNF, it suffices to check only
the FDs F for violation of BCNF, rather than checking all dependencies
in F*
- If none of the dependencies in F causes a violation of BCNF, then none
of the dependencies in F* will cause a violation of BCNF either

82



Testing for BCNF (Cont.)

Using only F is incorrect when testing a relation in a decomposition
of R
E.g., consider R (A, B, C, D) withF = {A - B, B - C}

- Decompose R into R;(A,B) and R,(A,C,D)

- Neither of the dependencies in F contain only attributes from (A,C,D)
so we might be mislead into thinking that R, satisfies BCNF

- Infact, dependency A — C in F* shows that R, is not in BCNF
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Testing Decomposition for BCNF

To check if a relation R; in a decomposition of R is in BCNF

- Either test R; for BCNF w.r.t. the restriction of F to R; (that is, all
FDs in F* that contain only attributes from R;)

- or use the original set of dependencies F that hold on R, but with the
following test:

+ for every set of attributes a € R;, check that a™ either includes no
attributes of R; — a (EAAZREREM) , or includes all attributes
of R; (BEAZERER) .

» If the condition is violated by some a —» B inF, the FD a —» (a™ -
a)NR; can be shown to hold on R;, and R; violates BCNF

-+ We use above dependency to decompose R;
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BCNF Decomposition Algorithm

resullt :={R};
done .= false;
while (not done) do
if (there is a schema R; in resul/t that is not in BCNF)
then begin
let « — [} be a nontrivial functional dependency that holds
on R; such that a* does not contain R, and a N p = @;
result :== (result — R;) U (R, — B) U (a,B);
end
else done := true;

Note: each R;is in BCNF, and decomposition is lossless-join
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Consider the relation scheme CTHRSG, where C=course, T=teacher,
H=hour, R=room, S=student, and 6=grade. The functional
dependencies F we assume are:

- CS—6: each student has one grade in each course

- C—T: each course has one teacher

- HR—C: only one course can meet in a room at one time
- HS—R: a student can be in only one room at one time
- TH—R: a teacher can be in only one room at one time
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Decomposition Tree

HR—C HS—R
CH—R

CHR
Key=HREXCH
HR--CERCH--R

87



BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is
dependency preserving

R=(J,K, L), F={JK->L, LK}, twocandidate keys = JK
and JL

- R is not in BCNF
Any decomposition of R will fail to preserve
- JK>LEEL->K
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Third Normal Form: Motivation

There are some situations where
- BCNF is not dependency preserving, and
- Efficient checking for FD violation on updates is important

Solution: define a weaker normal form, i.e., Third Normal Form
- Allows some redundancy
- But FDs can be checked on individual relations without computing a join

- There is always a lossless- join, dependency-preserving decomposition
intfo 3NF
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Third Normal Form

A relation schema R is in 3NF if for all « - B in F* at least one of
the following holds:
- a - B is trivial (i.e., B S a)
- a is a superkey for R
- Each attribute A in B — a is contained in a candidate key for R
(NOTE: each attribute may be in a different candidate key)

If a relation is in BCNF, it is in 3NF (since in BCNF one of the
first two conditions above must hold)

Third condition is a minimal relaxation of BCNF to ensure
dependency preservation

90



3NF (Cont.)

Example
- R=(J,K L), F={JK—>L,L > K}, two candidate keys: JK and JL
- Ris in 3NF
JK - L JKis a superkey/ candidate key
L > K Kis contained in a candidate key

- BCNF decomposition has (JL) and (LK), and testing for JK — L
requires a join
There is some redundancy in this schema
Equivalent to example:
Banker-schema = (branch-name, customer-name, banker-name)
banker-name — branch name,
branch-name, customer-name —» banker-name
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Testing for 3NF

Optimization: Need to check only FDs in F
Use attribute closure to check for each dependency ¢ — B, if ¢ isa
superkey.
If a is not a superkey, we have to verify if each attribute in B is
contained in a candidate key of R
- this test is rather more expensive, since it involve finding candidate keys
- testing for 3NF has been shown to be NP-hard
- Interestingly, decomposition into 3NF can be done in polynomial time
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3NF Decomposition Algorithm

Let F, be a canonical cover for F;
i:=0;
for each FD a—f in F.do
if none of the schemas R;, 1 <j <icontains a, g
then begin
=i +1;
R i=oap
end
end

if none of the schemas R;, 1 <j < i contains a
candidate key for R

then begin

=i+

R; := any candidate key for R;
end
return (Ry, Ry, ..., R})

The algorithm ensures that
each relation schema R; is
in 3NF, and decomposition
is dependency preserving
and lossless- join
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3NF Decomposition Example 1

R<U, F>, U={A,B,C,D,E}, F={AB—CDE, AC—BDE, B—»C, C—»D, B->E}
- Ris in which NF? Decompose R into 3NF, and the decomposition is
dependency preserving and lossless-join
1) Fe={AC—B, B—>CE, C>D};
2) Find candidate keys: AC, AB;
- key-attributes are: A, B, C:
+ for C—D, non-key attribute D is partial dependent on key AC, so R & 2NF, Re1NF.

3) Decompose R into 3NF:

+ So decompose R info (Same LHS attributes):
- U1={A,B,C}, F1={AC — B}
- U2={B,C,E}, F2={B — CE}
- U3={C,D}, F3={Cc - D}
« p={R1<U1 F1>, R2<U2,F2>, R3<U3,6F3>}, the decomposition is dependency preserving.
And candidate keys AC. AB are all in U1, so a row can be found as al, a2, a3, a4, a5 for
testing lossless-join form, so p is lossless- join.
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3NF Decomposition Example 2

- R<U, F>, U={A,B,C,D}, F={A—>C, C>A, B>AC, D>AC, BD—A].
- Ris in which NF? Decompose R into 3NF, and the decomposition is dependency
preserving and lossless-join
1)Fc={A > C,C> A, B> AD-> A}
2) Candidate keys of R: BD; key-attributes: B, D;
For B>A and D—A, non-key attribute A is partial dependent on key BD, so R¢2NF, Re INF
3) Decompose R into 3NF:

All attributes exist in F, and does not exist X—A € F and XA=U

So decompose R into (Same LHS attributes):
- U1={AC}, F1I=s{ A > C, C > A}
- U2={A,B}, F2={ B > A}
- U3={A,D}, F3={ D > A}
- p={R1<U1 ,F1>, R2<U2,F2>, R3<U3,F3>}, the decomposition is dependency preserving.
But candidate key BD is not in any Ui, so T =p U {R*<X,Fx>} = p U {R4<{B,D}, &>},
and 1 is the decomposition that is dependency preserving and lossless- join
- (ABCD)->(AC), (ABD) -> (AC), (AB), (AD), (BD)
95



- Relation schema:

Banker-info-schema = (branch-name, customer-name, banker-name, office-
number)

- The FDs for this relation schema are:

banker-name — branch-name, office-number
customer-name, branch-name — banker-name

*  The key is:
{customer-name, branch-name}
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Applying 3NF to Banker-info-schema

The for loop in the algorithm causes us to include the following
schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name, office-number)
Banker-schema = (customer-name, branch-name, banker-name)

Since Banker-schema contains a candidate key for
Banker-info-schema, we are done with the decomposition process
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Comparison of BCNF and 3NF

It is always possible o decompose a relation into relations in 3NF
and

- the decomposition is lossless
- the dependencies are preserved

It is always possible to decompose a relation into relations in BCNF
and

- the decomposition is lossless
- it may not be possible to preserve dependencies.
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Comparison of BCNF and 3NF (Cont.)

Example of problems due to redundancy in 3NF

- R= (J, K, L) J | L1 K
F={JK>L,L-K} R
Jo | bk

Js | bk

null | I | k;

A schema that is in 3NF but not in BCNF has the problems of
repetition of
- information (e.g., the relationship I;, k;)

- heed to use null values (e.g., o represent the relationship I,, k, where
there is no corresponding value for J)
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Designh Goals

Goal for a relational database design:
- BCNF

- Lossless join

- Dependency preservation

If we cannot achieve this, we accept one of
- Lack of dependency preservation
- Redundancy due to use of 3NF
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Design Goals (Cont.)

Interestingly, SQL does not provide a direct way of specifying FDs
other than superkeys.

- Can specify FDs using assertions, but they are expensive to test

Even if we had a dependency preserving decomposition, using SQL
we would not be able to efficiently test a FD whose left hand side
is not a key.
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Testing for FDs Across Relations

If decomposition is not dependency preserving, we can have an extra

materialized view for each dependency a — B in F, that is not

preserved in the decomposition

The materialized view is defined as a projection on af of the join of

the relations in the decomposition

Many newer database systems support materialized views and

database system maintains the view when the relations are updated.

- No extra coding effort for programmer

102



Testing for FDs Across Relations (Cont.)

The functional dependency a — B is expressed by declaring a as a

candidate key on the materialized view
Checking for candidate key cheaper than checking a - g
BUT:

- Space overhead: for storing the materialized view

- Time overhead: Need to keep materialized view up to date when relations

are updated

- Database system may not support key declarations on materialized views
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Features of Good Relational Designs

Functional Dependency (ER&L{k#Ef)

- Functional dependency: why and what?

- Closure of functional dependency (EREUKFRIZIE)

- Closure of attribute sets (BIEEAE)

- Canonical cover (R/NBE)

- Lossless-join decomposition (FoiRiEEzo i)

- Dependency preservation ({KEi{R:F)

Normalization (Migft) & Normal Forms (GB3l)
= Multivalued Dependencies* (Z{BEKif)

Database Design Process
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Multivalued Dependencies

There are database schemas in BCNF that do not seem to be
sufficiently normalized
Consider a database

classes(course, teacher, book)

such that (c, t, b)e classes means that t is qualified to teach ¢, and b is a

required textbook for ¢
The database is supposed to list for each course the set of teachers
any one of which can be the course’s instructor, and the set of books,
all of which are required for the course
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course teacher book

database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems| Avi OS Concepts
operating systems| Avi Shaw
operating systems| Jim OS Concepts
operating systems | Jim Shaw

classes

There are no non-trivial functional dependencies and therefore the relation is in BCNF

Insertion anomalies - i.e., if Sara is a new teacher that can teach database, two fuples
need to be inserted

- (database, Sara, DB Concepts)

(database, Sara, Ullman)

106



Multivalued Dependencies (Cont.)

* Therefore, it is better to decompose classes into:

course teacher
database Avi
database Hank
database Sudarshan
operating systems | Avi
operating systems | Jim

teaches We shall see that these two relations are in 4NF
course book
database DB Concepts
database Ullman
operating systems | OS Concepts
operating systems | Shaw

text
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Multivalued Dependencies (MVDs)

Let R be a relation schemaand leta S R and BES R . The
multivalued dependency
a-»f
holds on R if in any legal relation r(R), for all pairs for tuples t; and t;, in
r such that t;[a] = t;[], there exist tuples t3 and ¢, in r such that:
tila] = t;la] = tz[a] = t4]al
t3[B] = t11B]
t3[R — B] = t;[R — B]
t4[B] = t2[B]
t4[R — B] = t1[R — B]

«  Why called "multivalued dependency”?

- because a value ofa determine multiple values of B
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Why Called Multivalued Dependencies?

« When we say a - f3, it means that a value of a determine multiple

values of f8
course teacher book
database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems | Avi OS Concepts
operating systems| Avi Shaw
operating systems | Jim OS Concepts
operating systems | Jim Shaw
classes

We have: course -» teacher, course - book
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MVD (Cont.)

Tabular representation of a -

o p R-oa-p
tl ap...4q; /[11:4_1...(1]' LZ]'+1...(ZH
tz aj...q; | bi+l"°bj b]'+1...bn>
t3 aj...d; §Qi+1---ﬂj bj+l"'bn
t4 ai...d; bi+l"'bj Cl]'+1...€ln

Functional dependencies: equality-generating dependencies H1%% 7=k
Multivalued dependencies: tuple-generating dependencies JGZH ™ AE i
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MVD (Cont.)

Properties of MVD

- Symmetry: if X»Y then X»Z, here Z=U-X-Y
- Transitivity: if X »Y, Y »Z, then X »Z-Y
- If X »Y, X »Z, then X »YZ

- If X »Y, X~>»Z, then X »YNZ

- IfX>»Y, X>»Z, then X »Y-Z, X »Z-Y
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Let R be a relation schema with a set of attributes that are
partitioned into 3 nhonempty subsets.

Y, Z W
We say that Y>Z (Y multi-determines Z)
iff for all possible relations r(R)
- <y,z,w; >€ET and < y,z,,w, >€r then
- <y,z,w, >Er and < y,z,,w; >ET

Note that since the behavior of Z and W are identical it follows
that Y>> Z if Y>W
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Example (Cont.)

In our example:

- course » teacher

- course - book
The above formal definition is supposed to formalize the notion that
given a particular value of Y (course) it has associated with it a set
of values of Z (teacher) and a set of values of W (book), and these
two sets are in some sense independent of each other

Note:
- IfY-Z thenY » Z

- Indeed we have (in above notation) z; = z,
The claim follows
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Use of Multivalued Dependencies

We use MVDs in two ways:

- 1. To test relations to determine whether they are legal under a given
set of FDs and MVDs

- 2. To specify constraints on the set of legal relations. We shall concern

ourselves with relations that satisfy a given set of FDs and MVDs.

If arelation r fails to satisfy a given MVD, we can construct a

relations ' that does satisfy the MVD by adding tuples to r
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Theory of MVDs

From the definition of multivalued dependency, we can derive the
following rule:

- If a > B, then a » B; That is, every FD is also a MVD
The closure D* of D is the set of all FDs and MVDs logically implied
by D.
We can compute D* from D, using the formal definitions of FDs and
MVDs.

We can manage with such reasoning for very simple MVDs, which
seem to be common in practice

For complex MVDs, it is better to reason about sets of dependencies
using a system of inference rules
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Fourth Normal Form

A relation schema R is in 4NF w.r.t. a set D of FDs and MVDs if for
all MVDs in D* of the form a » B, where a« € R and B S R, at least
one of the following hold:

- a-» B is trivial (ie., S aoraupB =R)
- «a is a superkey for schema R

If a relation is in 4NF it is in BCNF
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Restriction of Multivalued Dependencies

The restriction of D to R; is the set D; consisting of
- All FDs in D* that include only attributes of Ri
- All MVDs of the form

a—>» B NR;

where a C R; and a » B is in D*
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4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let D; denote the restriction of D* to R;
while (not done)
if (there is a schema R; in result that is not in 4NF) then
begin
let @ » B be a nontrivial MVD that holds on R; such that a — R;
isnotinD;,andan p = @;
result := (result - R;) U ((R; -B) U (a, B));
end
else done:= true;

Note: each R; is in 4NF, and decomposition is lossless-join
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0o R=(A B C 6, H I
F={A->—> B
B »— HI
C6 > H}
O R is not in 4NF since A -»— B and A is not a superkey for R
O Decomposition

a) R, = (A, B) (R, is in 4NF)

b)R, = (A, C, 6, H, I) (R, is not in 4NF)
6@ R, = (C, 6, H) (R, is in 4NF)
d) R, = (A, C, 6, I) (R4 is not in 4NF)
Since A >»»>Band B>> HI, A>> HI, A >> I

e) R; = (A, I) (R5 is in 4NF)
)R, = (A, C, 6) (R¢ is in 4NF)
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Further Normal Forms

Join dependencies generalize MVDs

- lead to project-join normal form (PINF) (also called fifth normal form)
R -ERSEI

A class of even more general constraints, leads to a normal form
called domain-key normal form (DKNF) i5-f358=;

Problem with these generalized constraints: are hard to reason with,
and no set of sound and complete set of inference rules exists, hence
rarely used
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Features of Good Relational Designs
Functional Dependency (ER&L{k#Ef)
- Functional dependency: why and what?
- Closure of functional dependency (EREUKFRIZIE)
- Closure of attribute sets (BHEAE)
Canonical cover (R/NEBE)
- Lossless-join decomposition (FoiRiEEzo i)
- Dependency preservation ({KEi{R:F)
Normalization (Migft) & Normal Forms (GB3l)
Multivalued Dependencies* (Z{E{Kk#f)
= Database Design Process
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Overall Database Design Process

We have assumed schema R is given

- R could have been generated when converting E-R diagram to a set of
tables

- R could have been a single relation containing all attributes that are of

interest (called universal relation, jZ%&)

- Normalization breaks R into smaller relations and normal form
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ER Model and Normalization

When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not
need further normalization

However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

E.g. employee entity with attributes department-number and
department-address, and an FD
department-number — department-address

- Good design would have made department an entity

FDs from non-key attributes of a relationship set are possible, but
rare
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Universal Relation Approach iZX&

Dangling tuples - Tuples that "disappear” in computing a join

- Letry(Ry), m2(Ry), ..., mo(R,) be a set of relations

- A tuple t of the relation r; is a dangling tuple if ¢ is not in the relation:

Hg, > (ry X1y X XTy)

The relation r{ x r, x --- x r,, is called a universal relation since it
involves all the attributes in the "universe” defined by R{ UR, U --- U
Ry
If dangling tuples are allowed in the database, instead of decomposing
a universal relation, we may prefer to synthesize a collection of
normal form schemas from a given set of attributes.
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Universal Relation Approach

Dangling tuples may occur in practical database applications
They represent incomplete information

E.g., may want to break up information about loans into:
- (branch-name, loan-number)
- (loan-number, amount)

- (loan-number, customer-name)

Universal relation would require null values, and have dangling tuples
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Universal Relation Approach (Cont.)

A particular decomposition defines a restricted form of incomplete
information that is acceptable in our database.

- Above decomposition requires at least one of customer-name, branch-name
or amount in order to enter a loan number without using null values

- Rules out storing of customer-name, amount without an appropriate loan-
number (since it is a key, it can't be null eitherl!)

Universal relation requires unique attribute names unique role
assumption

Reuse of attribute names is natural in SQL since relation names can be
prefixed to disambiguate names
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Denormalization for Performance

May want to use non-normalized schema for performance

- E.g., displaying customer-name along with account-number and balance
requires join of account with depositor

- Alternative 1: Use denormalized relation containing attributes of
account as well as depositor with all above attributes
* Faster lookup
+ Extfra space and extra execution time for updates
 Extfra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as
account x depositor

* Benefits and drawbacks same as above, except no extra coding work for
programmer and avoids possible errors

127



Other Design Issues

- Some aspects of database design are not caught by normalization

+ Examples of bad database design to be avoided: Instead of
earnings(company-id, year, amount), use
- earnings-2000, earnings-2001, earnings-2002, etc., all on the schema
(company-id, earnings).

- Above are in BCNF, but make querying across years difficult and needs a new
table each year

- company year(company-id, earnings-2000, earnings-2001, earnings-2002)

Also in BCNF, but makes querying across years difficult and requires new
attribute each year.

- Is an example of a crosstab (32X ), where values for one attribute become
column names

* Used in spreadsheets, and in data analysis tools

128



Given the relational schema R<U, F>, U={A,B,C,D,E },
F={AC-BD, B -C, C - D, B - E}
a) Use Armstrong axioms and related rules to prove the functional
dependency AC - E
b) Compute (A) and (AC)
c) Find a canonical cover F. of F
d) Find all candidate keys, and point out R is in which normal form

e) Decompose R into 3NF, which the decomposition is lossless-join and
dependency preserving.

f) Give related explanation or proof that the above decomposition is
lossless-join and dependency preserving

g) *Decompose the relation into relations in BCNF
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Further Reading

- Chapter 7

Exercises

-71,72,76

- Any two from (7.30, 7.31, 7.32, 7.33, 7.34)
Submission

- Deadline: April 23 , 2024
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End of Lecture 6
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