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Outline

◼ Generative vs. Discriminative: Revisit

◼ Bayesian concept learning

◼ The beta-binomial model

◼ The Dirichlet-multinomial model

◼ Naive Bayes classifiers
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Generative vs. Discriminative: Revisit

◼ Frequentist: 𝜃 seen as fixed

❑ e.g., a point estimation Ƹ𝜃

◼ Bayesian: 𝜃 seen as learned

❑ Given data 𝐷, 𝑃 𝜃 𝐷 = 𝑃 𝐷 𝜃 𝑃 𝜃
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Generative vs. Discriminative: Revisit

◼ Discriminative models are often frequentist,
and generative models are often Bayesian

❑ — but the two dimensions are orthogonal and can be mixed
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Frequentist Bayesian

Discriminative
Logistic Regression, SVM, 
Neural Nets

Bayesian Logistic Regression, 
Bayesian Neural Nets

Generative
GMM (with MLE), 
HMM (with MLE)

Naive Bayes, Bayesian GMM, 
Variational Bayes models



Generative vs. Discriminative: Revisit

◼ Goal of discriminative model

❑ Learn the conditional distribution 𝑃(𝑌|𝑋; 𝜃)

❑ 𝜃 often seen as fixed, hence simplifies to 𝑃(𝑌|𝑋)
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𝑃 𝑌 = 𝑐 𝑥, 𝜃 =
𝑃 𝑌=𝑐,𝑥 | 𝜃

𝑃(𝑥|𝜃)

=
𝑃 𝑌=𝑐 | 𝜃 𝑃(𝑥|𝑌=𝑐,𝜃)

σ
𝑐′∈𝐶

𝑃(𝑥,𝑌=𝑐′|𝜃)

=
𝑃 𝑌=𝑐 | 𝜃 𝑃(𝑥|𝑌=𝑐,𝜃)

σ
𝑐′∈𝐶

𝑃 𝑌=𝑐′| 𝜃 𝑃(𝑥|𝑌=𝑐′,𝜃)

◼ Goal of generative model

❑ Learn the joint distribution 𝑃(𝑋, 𝑌;𝜃)

◼ Generative classifier

❑ Key: class-conditional distribution 𝑃(𝑥|𝑌 = 𝑐, 𝜃)

Generative vs. Discriminative: Revisit
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class-conditional
distribution

class-prior
distribution



Outline

◼ Generative vs. Discriminative: Revisit

◼ Bayesian concept learning

◼ The beta-binomial model

◼ The Dirichlet-multinomial model

◼ Naive Bayes classifiers
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Bayesian concept learning

◼ Concept learning

❑ Provide only the positive examples 

❑ Learn the meaning of the example
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This is a cat



Bayesian concept learning

◼ Concept learning

❑ Be equivalent to binary classification
◼ The goal is to learn the indicator function f, determining which elements are in 

the set C. 

◼ Difference： binary classification provides both the positive and negative 
examples, while concept learning provides only the positive examples
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𝑓 𝑥 = ቊ
1, 𝑥 ∈ 𝐶
0, 𝑥 ∉ 𝐶



Bayesian concept learning
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◼ Bayesian concept learning vs. binary classification



Example: number game

◼ Given some unknown arithmetical concepts 𝐶, such as 
“prime number” or “a number between 1 and 10”

◼ Given positive examples 𝒟 = {𝑥1, 𝑥2, … , 𝑥𝑁} ⊆ 𝐶

◼ Question: the new sample ෤𝑥 ∈ 𝐶 ?

❑ Learn a basic rule to determine whether the data follows the 
unknown arithmetical concepts 𝐶
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Example: number game

◼ Suppose 𝒟 and the test set are from [1,100]

◼ Concept set 𝐶 is not clear

◼ Four experiments

❑ Experiment 1: 𝒟 = {16}

❑ Experiment 2: 𝒟 = {60}

❑ Experiment 3: 𝒟 = {16,8,2,64}

❑ Experiment 4: 𝒟 = {16,23,19,20}
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Example: number game
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Posterior predictive 

distribution 𝑃(෤𝑥 ∈ 𝐶|𝒟)



Bayesian concept learning

◼ Posterior predictive distribution 𝑝(෤𝑥 ∈ 𝐶|𝒟)

❑ Describe the probability that ෤𝑥 ∈ 𝐶 given the data 𝒟 for any ෤𝑥 ∈
{1,2, … , 100}

◼ Question: How to explain the behavior and emulate it in a 
machine?

2025/9/21 Generative Models: Fundamentals and Applications 14



Bayesian concept learning

◼ Hypothesis space ℋ:

❑ Include all possible models or rules for the concept set

❑ Eg: odd numbers, even numbers, powers of two, all numbers ending 
in j (for 0 ≤ j ≤ 9)

◼ Version space

❑ The subset of ℋ that is consistent with the data 𝒟

❑ As we see more examples, the version space shrinks and we become 
increasingly certain about
◼ Eg.𝒟 = {16} → 𝒟 = {16,8,2,64}
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Bayesian concept learning

◼ The shrinking of version space
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Likelihood

◼ Given 𝒟 = {16,8,2,64}, which hypothesis is more possible?

❑ ℎ𝑡𝑤𝑜 = "𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓 𝑡𝑤𝑜"

❑ ℎ𝑒𝑣𝑒𝑛 = "𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟"

◼ Extension of a concept

❑ The set of numbers that belong to the concept

❑ the extension of ℎ𝑡𝑤𝑜 is {2,4,8,16,32,64}

❑ the extension of ℎ𝑒𝑣𝑒𝑛 is {2,4,6,…,98,100}
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Likelihood

◼ Strong sampling assumption

❑ Assume N examples are sampled uniformly at random from the 
extension of a concept.

◼ Likelihood 𝑝{𝒟|ℎ}

❑ the probability of independently sampling N items (with 
replacement) from ℎ that happen to constitute 𝒟
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Likelihood

◼ Compute the probability 𝑃{𝒟|ℎ} ?

❑ Let 𝒟 = 16
◼ 𝑝 𝒟 ℎ𝑡𝑤𝑜 = 1/6

◼ 𝑝 𝒟 ℎ𝑒𝑣𝑒𝑛 = 1/50

❑ Let 𝒟 = 16,8,2,64

◼ 𝑝 𝒟 ℎ𝑡𝑤𝑜 = (1/6)4= 7.7 × 10−4

◼ 𝑝 𝒟 ℎ𝑒𝑣𝑒𝑛 = (1/50)4= 1.6 × 10−7

◼ likelihood ratio：
𝑝 𝒟 ℎ𝑡𝑤𝑜
𝑝 𝒟 ℎ𝑒𝑣𝑒𝑛

= 4812.5

2025/9/21 Generative Models: Fundamentals and Applications 19



Likelihood

◼ Size principle (Occam’s razor)

❑ The model favors the simplest (smallest) hypothesis consistent with 
the data

❑ Among all hypotheses consistent with 𝒟, the fewer data a hypothesis 
ℎ covers, the higher its likelihood.
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Prior

◼ Given 𝒟 = {16,8,2,64}, which hypothesis seems “conceptually 
unnatural” ?

❑ ℎ𝑡𝑤𝑜 = "𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓 𝑡𝑤𝑜"
◼ ℎ𝑡𝑤𝑜 = {2,4,8,16,32,64}

◼ 𝑝 𝒟 ℎ𝑡𝑤𝑜 = (1/6)4

❑ ℎ𝑡𝑤𝑜
′ = "𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑒𝑥𝑐𝑒𝑝𝑡 32"

◼ ℎ𝑡𝑤𝑜
′ = {2,4,8,16,64}

◼ 𝑝 𝒟 ℎ𝑡𝑤𝑜
′ = (1/5)4

❑ The likelihood of  ℎ𝑡𝑤𝑜
′ is higher than that of ℎ𝑡𝑤𝑜
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Prior

◼ Prior

❑ Assign  low prior probability to unnatural concepts

◼ Eg: given 𝒟={1200,1500,900,1400}, classify 400 and 1183 ?

❑ The numbers are from some arithmetic rule
◼ 400 is likely but 1183 is unlikely

❑ The numbers are examples of healthy cholesterol levels
◼ 400 is unlikely but 1183 is likely
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Example: what prior to use

◼ Hypothesis space
❑ Even numbers

❑ Odd numbers

❑ Squares 

❑ Multiples of j (3 ≤ 𝑗 ≤ 10)

❑ Ends in j (1 ≤ 𝑗 ≤ 9)

❑ Powers of j (2 ≤ 𝑗 ≤ 10)

❑ All

❑ Powers of 2, plus 37 

❑ Powers of 2, except 32 
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Posterior

◼ posterior = normalization (likelihood times prior)

◼ Prior vs. Posterior

❑ Prior: Without training data, quantify the possibility of each 
hypothesis 

❑ Posterior: Given training data, quantify the possibility of each 
hypothesis
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Example

◼ Given 𝒟={16}

❑ ℎ=“powers of 2”
◼ Prior

◼ Likelihood

◼ Posterior
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𝑝 𝒟 ℎ = 1/6

𝑝(ℎ) = 0.025

𝑝 ℎ 𝒟 =
0.0042

𝑠𝑢𝑚



Example

◼ From the results, we learn

❑ The hypothesis with the 
highest posterior is "powers 
of 4"

❑ Prior and likelihood jointly 
determine the posterior

❑ Even if the prior is large, if the 
likelihood is too small, the 
posterior can still be small

❑ And vice versa
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Example

◼ Given 𝒟={16,8,2,64}

❑ Five possible hypothesis
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Example

◼ Given 𝒟={16,8,2,64}

❑ ℎ=“powers of 2”
◼ Prior

◼ Likelihood

◼ Posterior
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𝑝 𝒟 ℎ = 0.77 × 10−3

𝑝(ℎ) = 0.025

𝑝 ℎ 𝒟 =
0.019 × 10−3

𝑠𝑢𝑚
≈ 1



Example

◼ Result: 

❑ Assigning small priors to unnatural hypotheses helps avoid 
overfitting the data

❑ When 𝒟  is sufficiently large, 𝑝 ℎ ∣ 𝒟 will peak at a single 
hypothesis (reach its maximum)

❑ Taken as the optimal hypothesis

❑ Take-away:

◼ Prior prevents overfitting, and more data changes likelihood which sharpens the 
posterior to the true hypothesis.
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Example
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Summary of Concepts

◼ Hypothesis space: the set of all possible hypotheses (concepts)

◼ Hypothesis: a specific member or concept of the hypothesis space

◼ Version space: the subset of hypotheses consistent with observed data

◼ Extension: the set of samples that satisfy a given hypothesis

◼ Prior: initial belief or bias over hypotheses before seeing data

◼ Likelihood: probability of observing the data given a hypothesis (sampling 
from its extension)

◼ Posterior: updated belief about a hypothesis after observing data

◼ Optimal hypothesis: the hypothesis with the highest posterior probability
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Posterior

◼ MAP (Maximum a Posteriori) estimate

❑ It simply finds the posterior mode
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Posterior

◼ MAP estimate

❑ Note:  
◼ The log-likelihood grows linearly with the number of elements 𝑁. 

◼ When 𝑁 is sufficiently large, MAP is dominated by the log-likelihood and 
becomes almost independent of the log-prior.
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Posterior

◼ MLE (Max-likelihood Estimation)

❑ Choose መ𝜃 that maximize the likelihood of the observed data

❑ For MAP, if we have enough data, we see that the data overwhelms 
the prior. In this case, the MAP estimate converges towards the MLE
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Posterior
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Posterior

◼ If the true hypothesis is in the hypothesis space

❑ The MAP estimate will converge upon this hypothesis.

◼ If our hypothesis class is not rich enough to represent the 
“truth”

❑ Converge on the hypothesis that is as close as possible to the truth
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Posterior predictive distribution

◼ Posterior predictive distribution

❑ Consider 𝑝(ℎ|𝒟) as a kind of weight

❑ a weighted average of the predictions of each individual hypothesis
◼ Bayes model averaging (BMA) method
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σℎ∈ℋ 𝑝(ℎ|𝒟) = 1



Example
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𝒟 = {16}

Top:    𝑝(෤𝑥|𝒟)
Bottom-left:    𝑝(෤𝑥|ℎ)
Bottom-right: 𝑝(ℎ|𝒟)

Optimal
Hypothesis



Example

◼ Given 𝒟={16,8,2,64}

❑ The posterior for the 
hypothesis “powers of 2” 
is close to 1
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𝑝 ෤𝑥 𝒟 = ෍

ℎ∈ℋ

𝑝 ℎ 𝒟 𝑝(෤𝑥|ℎ)

= ෍

ℎ∈ℋ

𝛿෡ℎ𝑀𝐴𝑃 ℎ 𝑝(෤𝑥|ℎ)

≈ 𝑝(෤𝑥|෠ℎ𝑀𝐴𝑃)

Optimal



Posterior predictive distribution
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◼ Plug-in approximation

❑ If we have “figured things out”, posterior becomes a delta function 
centered at the MAP estimate

𝑝 ෤𝑥 𝒟 = ෍

ℎ∈ℋ

𝑝 ℎ 𝒟 𝑝(෤𝑥|ℎ)

≈ 𝑝(෤𝑥|෠ℎ𝑀𝐴𝑃)



Posterior predictive distribution

◼ BMA vs. plug-in (MAP)

❑ Sample space by MAP: from narrow to wide

❑ For a single hypothesis

❑ As training data increases, the sample space generated by the MAP-
selected hypothesis expands

❑ Example
◼ 𝐷 = 16  :the optimal hypothesis is "powers of 4", generated samples 

4 16 64

◼ 𝐷 = 16 8 2 64  :the optimal hypothesis is "powers of 2", generated samples 
2 4 8 16 32 64
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Posterior predictive distribution

◼ BMA vs. plug-in (MAP)

❑ Sample space by BMA: from wide to narrow

❑ For the entire hypothesis space

❑ As training data increases, some hypotheses are assigned weight 0, 
so the effective sample space shrinks

❑ Example
◼ 𝐷 = 16  :many hypotheses are consistent with the data

◼ 𝐷 = 16 8 2 64  :fewer hypotheses remain consistent with the data, 
inconsistent ones have weight 0
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A more complex prior

◼ Mixture of several priors

❑ E.g., in number game 
◼ 𝑝𝑟𝑢𝑙𝑒𝑠 : arithmetical concepts

◼ 𝑝𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 : intervals between n and m
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A more complex prior

◼ Arithmetical concepts only
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A more complex prior

◼ Arithmetical concepts + intervals between n and m
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Outline

◼ Generative vs. Discriminative: Revisit

◼ Bayesian concept learning

◼ The beta-binomial model

◼ The Dirichlet-multinomial model

◼ Naive Bayes classifiers
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The beta-binomial model

◼ Continuous case

❑ Unknown parameters are continuous

❑ Hypothesis space is (some subset) of ℝ𝐾

◼ K is the number of parameters

❑ Replace sums with integrals
◼ Posterior

◼ Posterior Predictive Distribution
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The beta-binomial model

◼ Example: coin toss

❑ Toss coins N times

❑ 𝑁1 times head up, and 𝑁0 = 𝑁 −𝑁1 times tail up

❑ Suppose 𝑥𝑖~Ber 𝜃 , 𝑖 = 1,… ,𝑁
◼ 𝑥𝑖 = 1: head up

◼ 𝑥𝑖 = 0: tail up

◼ 𝜃 ∈ [0,1]: rate parameter (probability of heads)
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Likelihood

◼ Suppose the data 𝑥1, 𝑥2, … , 𝑥𝑁 are i.i.d.

❑ Sufficient statistic: it captures all the information in the data about 
the parameter 𝜃
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The beta-binomial model

◼ Suppose 𝑁1 is a random variable

❑ 𝑁1~Bin(𝑁, 𝜃)

❑ The likelihood for the binomial sampling model is the same as the 
likelihood for the Bernoulli model
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Bin 𝑁1 𝑁, 𝜃 =
𝑁
𝑁1

𝜃𝑁1(1 − 𝜃)𝑁−𝑁1



Prior

◼ The prior has the same form as the likelihood

❑ Likelihood 

❑ Prior, assume in the form of

❑ Hence, posterior 

❑ Conjugate prior
◼ the prior and the posterior have the same form
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Posterior

◼ Multiply the likelihood by the beta prior
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Example
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(a) With a relatively weak prior, the posterior is very close to the 
likelihood, as the data overwhelms the prior.
(b) With a stronger prior, the posterior becomes a compromise between 
the prior and the likelihood.



Posterior

◼ MAP estimate
max
𝜃

𝑝(𝜃|𝒟) ∝ 𝐵𝑒𝑡𝑎(𝜃|𝑁1 + 𝑎,𝑁0 + 𝑏)

◼ MLE 

❑ If the prior is uniformly distributed (a=b=1)

2025/9/21 Generative Models: Fundamentals and Applications 54

𝐵𝑒𝑡𝑎(𝑎, 𝑏): mode = 
𝑎−1

𝑎+𝑏−2



Posterior

◼ Posterior mean

❑ Let 𝛼0 = 𝑎 + 𝑏, and let the prior mean 𝑚1 = Τ𝑎 𝛼0

where 𝜆 =
𝛼0

𝑁+𝛼0

❑ Result: the posterior mean is convex combination of the prior mean 
and the MLE
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𝐵𝑒𝑡𝑎(𝑎, 𝑏): mean = 
𝑎

𝑎+𝑏



Posterior

◼ Equivalent sample size of the prior 𝛼0 = 𝑎 + 𝑏

◼ Equivalent sample size of the posterior 𝑁 + 𝛼0

◼ Ratio of the prior to posterior equivalent sample size 𝜆

❑ The  smaller 𝜆, the closer the posterior mean is to the MLE

❑ The  smaller 𝜆, the closer the posterior mode is to the MLE
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Posterior

◼ Posterior variance

❑ If 𝑁 ≫ 𝑎, 𝑏

◼ The variance is maximized when ෠𝜃𝑀𝐿𝐸 = 0.5

◼ The variance is minimized when ෠𝜃𝑀𝐿𝐸 = 0, 1
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𝐵𝑒𝑡𝑎(𝑎, 𝑏): var = 
𝑎𝑏

(𝑎+𝑏)2(𝑎+𝑏+1)



Posterior
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Posterior predictive distribution

◼ Generate one data
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𝑝 ෤𝑥 = 1 𝒟) = ׬
0

1
𝑝 ෤𝑥 = 1 𝜃 𝑝 𝜃 𝒟 𝑑𝜃

= ׬
0

1
𝜃 Beta 𝜃 𝑁1 + 𝑎,𝑁0 + 𝑏 𝑑𝜃

= 𝔼 𝜃 𝒟

=
𝑁1+𝑎

𝑁+𝑎+𝑏

BMA

Posterior mean



Posterior predictive distribution

◼ Overfitting and the black swan paradox

❑ Zero count problem or the sparse data problem
◼ Suppose the sample size is very small, 

❑ E.g., 𝑁 = 3, 𝑁1 = 0

◼ Suppose we use plug-in the MLE

❑
መ𝜃𝑀𝐿𝐸 =

0

3
= 0

◼ Result: heads are impossible.
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Posterior predictive distribution

◼ Overfitting and the black swan paradox

❑ Bayes theorem: Laplace’s rule of succession
◼ Suppose the prior is uniform on [0,1]

◼ Add-one smoothing: Beta(1, 1)
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Posterior predictive distribution

◼ Generate multiple data: beta-binomial distribution

❑ Predict the number of heads, 𝑥, in M future trials
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𝑝 𝑥 𝒟,𝑀 = න
0

1

Bin 𝑥 𝑀, 𝜃 Beta(𝜃|𝑁1 + 𝑎,𝑁0 + 𝑏) 𝑑𝜃

=
𝑀
𝑥

1

𝐵(𝑁1 + 𝑎,𝑁0 + 𝑏)
න
0

1

𝜃𝑥 (1 − 𝜃)𝑀−𝑥𝜃𝑁1+𝑎−1 (1 − 𝜃)𝑁0+𝑏−1 𝑑𝜃

=
𝑀
𝑥

𝐵(𝑥 + 𝑁1 + 𝑎,𝑀 − 𝑥 + 𝑁0 + 𝑏)

𝐵(𝑁1 + 𝑎,𝑁0 + 𝑏)

≜ 𝐵𝑏(𝑥|𝑁1 + 𝑎,𝑁0 + 𝑏,𝑀)



Posterior predictive distribution

◼ beta-binomial distribution

❑ Mean

❑ Variance 
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𝔼[𝑥|𝒟] = 𝑀
𝑁1 + 𝑎

𝑁 + 𝑎 + 𝑏

Var 𝑥|𝒟 =
𝑀 𝑁1 + 𝑎 𝑁0 + 𝑏

𝑁 + 𝑎 + 𝑏 2

𝑁 + 𝑎 + 𝑏 +𝑀

𝑁 + 𝑎 + 𝑏 + 1



Experiment

◼ Bayesian prediction has longer tails, spreading its probability mass more 
widely, and is therefore less prone to overfitting and black swan type 
paradoxes
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Beta(2,2) prior𝑁1 = 3,𝑁0 = 17



Outline

◼ Generative vs. Discriminative: Revisit

◼ Bayesian concept learning

◼ The beta-binomial model

◼ The Dirichlet-multinomial model

◼ Naive Bayes classifiers
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The Dirichlet-multinomial model

◼ Example: 

❑ Infer the probability that a dice with K sides comes up as face k

❑ Given 𝒟 = 𝑥1, 𝑥2, … , 𝑥𝑁 𝑥𝑖 ∈ 1,2, … , 𝐾 }

◼ Likelihood

where 
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The Dirichlet-multinomial model

◼ Prior: conjugate prior

◼ Posterior
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The Dirichlet-multinomial model

◼ MAP estimate

where

◼ MLE: uniform prior
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The Dirichlet-multinomial model

◼ Posterior predictive

where 𝜃−𝑗 are all the components of 𝜽 except 𝜃𝑗
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Beta-Binomial vs. Dirichlet-Multinomial 

Beta-Binomial Model Dirichlet-Multinomial Model

Task scenario Binary classification (coin toss: head/tail)
Multi-class classification (dice roll: 
1,2,…,K)

Parameters 𝜃 ∈ [0,1] :probability of “head”
𝜃 = 𝜃1 … 𝜃𝐾 ,class probabilities, σ𝑘 𝜃𝑘
= 1

Prior Beta distribution: Beta 𝜃 𝑎, 𝑏 Dirichlet distribution: Dir 𝜃 𝛼1, … , 𝛼𝐾

Likelihood Binomial: Bin(𝑁1|𝑁, 𝜃) Multinomial: Mult(𝑁1, … , 𝑁𝐾|𝑁, 𝜃)

Conjugacy Beta is the conjugate prior of Binomial
Dirichlet is the conjugate prior of 
Multinomial

Posterior 𝜃 ∣ 𝐷 ∼ Beta(𝑎 + 𝑁1, 𝑏 + 𝑁0) 𝜃 ∣ 𝐷 ∼ Dir 𝛼1 + 𝑁1, … , 𝛼𝐾 + 𝑁𝐾

Posterior predictive 𝑝 ෤𝑥 = 1 ∣ 𝐷 =
𝑎 + 𝑁1

𝑎 + 𝑏 + 𝑁
𝑝 ෤𝑥 = 𝑗 ∣ 𝐷 =

𝛼𝑗 + 𝑁𝑗

𝛼0 + 𝑁

Intuition “Pseudo-counts”: 𝑎 − 1 heads, 𝑏 − 1 tails
“Pseudo-counts”: 𝛼𝑘 − 1 for each class, 
total 𝛼0 − 𝐾
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Outline

◼ Generative vs. Discriminative: Revisit

◼ Bayesian concept learning

◼ The beta-binomial model

◼ The Dirichlet-multinomial model

◼ Naive Bayes classifiers
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Naive Bayes classifiers

◼ Classify vectors of discrete-valued features to C classes
𝐱 = (𝑥1, 𝑥2, … , 𝑥𝐷)

𝑇∈ {1,2, … , 𝐾}𝐷

❑ K is the number of values for each feature

❑ D is the number of features

❑ Compute the probability 𝑃(𝑌 = 𝑐|𝐱, 𝜃)
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Naive Bayes classifiers

◼ Generative model, revisit

❑ Key: learn class-conditional density 𝑃(𝐱|𝑌 = 𝑐, 𝜃)
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𝑃 𝑌 = 𝑐 𝐱, 𝜃 =
𝑃 𝐱,𝑌=𝑐| 𝜃

𝑃(𝐱|𝜃)

=
𝑃 𝐱,𝑌=𝑐| 𝜃

σ
𝑐′∈𝐶

𝑃(𝐱,𝑌=𝑐′|𝜃)

=
𝑃 𝑌=𝑐 | 𝜃 𝑃(𝐱|𝑌=𝑐,𝜃)

σ
𝑐′∈𝐶

𝑃 𝑌=𝑐′| 𝜃 𝑃(𝐱|𝑌=𝑐′,𝜃)

class-conditional
distribution



Naive Bayes classifiers

◼ Assumption: the features are conditionally independent
given the class label

❑ Even if the naive Bayes assumption is not true, it often results in 
classifiers that work well
◼ The model is quite simple (it only has O(CD) parameters, for C classes and D 

features)

2025/9/21 Generative Models: Fundamentals and Applications 74



Naive Bayes classifiers

◼ In the case of binary features  𝑥𝑗 ∈ {0,1}

❑ Multivariate Bernoulli naive Bayes

❑ Use the Bernoulli distribution

◼ 𝜇𝑗𝑐 is the probability that feature j occurs in class c
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Naive Bayes classifiers

◼ In the case of categorical features  𝑥𝑗 ∈ {1,… , 𝐾}

❑ multinomial Naive Bayes

❑ Use the multinomial distribution

◼ 𝜇𝑗𝑐 is a histogram over the K possible values for 𝑥𝑗 in class c.
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Naive Bayes classifiers

◼ In the case of real-valued features: 

❑ Gaussian Naive Bayes

❑ Use the Gaussian distribution

◼ 𝜇𝑗𝑐 is the mean of feature j in objects of class c

◼ 𝜎𝑗𝑐
2  is the variance of feature j in objects of class c
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Model fitting

◼ How to “train” a naive Bayes classifier

❑ MLE

❑ MAP estimate

❑ Bayesian estimation
◼ Compute the full posterior 𝑝(𝜃|𝒟)
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MLE for NBC

◼ The probability for a single data (𝐱𝑖 , 𝑦𝑖)

❑ 𝝅：the parameters for class prior
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𝑝 𝐱𝑖 , 𝑦𝑖 𝜽 = 𝑝 𝑦𝑖 𝝅 ෑ

𝑗

𝑝 𝑥𝑖𝑗 𝑦𝑖 , 𝜃𝑗

=ෑ

𝑐

𝜋𝑐
𝕀(𝑦𝑖=𝑐)ෑ

𝑗

ෑ

𝑐

𝑝 𝑥𝑖𝑗 𝜃𝑗𝑐
𝕀(𝑦𝑖=𝑐)



MLE for NBC

◼ The probability for data set 𝒟

◼ The log-likelihood for data set 𝒟
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𝑝 𝒟 𝜽 =ෑ

𝑖=1

𝑁

ෑ

𝑐

𝜋𝑐
𝕀(𝑦𝑖=𝑐)ෑ

𝑗

ෑ

𝑐

𝑝 𝑥𝑖𝑗 𝜃𝑗𝑐
𝕀(𝑦𝑖=𝑐)



MLE for NBC

◼ The log-likelihood for data set 𝒟

❑ the class prior (uniform distribution)

❑ Suppose all features are binary
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Bayesian naive Bayes

◼ Trouble for MLE: overfitting

◼ Solution: Bayesian estimation
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𝑝 𝜽 𝒟 =
𝑃 𝜽 𝑃(𝒟|𝜽)

׬
𝜽′
𝑃 𝜽′ 𝑃 𝒟 𝜽′ 𝑑𝜽′



Bayesian naive Bayes

◼ Prior 

❑ 𝝅: Dir(𝜶) prior

❑ 𝜃𝑗𝑐: Beta(𝛽0, 𝛽1) prior

◼ Special case: 𝜶 = 1, 𝜷 = 1

❑ Add-one or Laplace smoothing
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Bayesian naive Bayes

◼ Posterior
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◼ Posterior

❑ Posterior mean 

Bayesian naive Bayes
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◼ MAP estimate

❑ The MAP estimate can be directly computed by combining prior 
counts with empirical counts.

❑ Very simple to implement, with low computational complexity, and 
easy to extend.

Bayesian naive Bayes
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Using the model for prediction

◼ Predict the label y for new data x

❑ Bayesian procedure
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Using the model for prediction

◼ Rewrite the prediction probability
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𝜋𝑐关于分布𝑝(𝜋|𝒟)
的期望

𝜃𝑗𝑐
𝕀(𝑥𝑗=1) (1 − 𝜃𝑗𝑐)

𝕀(𝑥𝑗=0)关于分布

𝑝(𝜃𝑗𝑐|𝒟)的期望



Using the model for prediction

◼ Plug in the posterior mean parameters
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Using the model for prediction

◼ Plug in the point estimate: MLE or MAP
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Using the model for prediction

◼ Classifier 
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Example 

◼ 给定训练数据如下表所示，其中，𝑋(1) ∈ 1,2,3 ,

𝑥 2 ∈ {𝑆,𝑀, 𝐿}为特征，𝑌 ∈ {−1,1}为类标记。

试根据给定训练数据学习一个朴素贝叶斯分类器并确定𝑥 = (2, 𝑆)𝑇的
类标记。
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑋(1) 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

𝑥 2 S M M S S S M M L L L M M L L

Y -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 1 -1



Example

◼ MLE

❑ 计算 class prior

❑ 计算 ෠𝜃𝑘,𝑗,𝑐 = 𝑝(𝑋 𝑗 = 𝑘|𝑌 = 𝑐)
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𝑁1 = 9

𝑁−1 = 6

𝑁 = 15 ො𝜋1 =
𝑁1
𝑁

=
9

15

ො𝜋−1 =
𝑁−1
𝑁

=
6

15

෠𝜃1,1,1 =
𝑁1,1,1
𝑁1

=
2

9

෠𝜃2,1,1 =
𝑁2,1,1
𝑁1

=
3

9

෠𝜃3,1,1 =
𝑁3,1,1
𝑁1

=
4

9

෠𝜃𝑆,2,1 =
𝑁𝑆,2,1
𝑁1

=
1

9

෠𝜃𝑀,2,1 =
𝑁𝑀,2,1

𝑁1
=
4

9

෠𝜃𝐿,2,1 =
𝑁𝐿,2,1
𝑁1

=
4

9



Example

❑ 计算 ෠𝜃𝑘,𝑗,𝑐
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෠𝜃1,1,−1 =
𝑁1,1,−1
𝑁−1

=
3

6

෠𝜃2,1,−1 =
𝑁2,1,−1
𝑁−1

=
2

6

෠𝜃3,1,−1 =
𝑁3,1,−1
𝑁−1

=
1

6

෠𝜃𝑆,2,−1 =
𝑁𝑆,2,−1
𝑁−1

=
3

6

෠𝜃𝑀,2,−1 =
𝑁𝑀,2,−1

𝑁−1
=
2

6

෠𝜃𝐿,2,−1 =
𝑁𝐿,2,−1
𝑁−1

=
1

6



Example

❑ 预测𝑝(𝑌 = 𝑐|𝐱, 𝒟)

所以数据(2, 𝑆)𝑇预测的标签为-1

2025/9/21 Generative Models: Fundamentals and Applications 95

𝑝 𝑌 = 1 (2, 𝑆)𝑇 , 𝒟 ∝ ො𝜋1 መ𝜃2,1,1
𝕀 𝑋 1 =2

መ𝜃𝑆,2,1
𝕀 𝑋 2 =𝑆

=
9

15
×

3

9
×

1

9
=

1

45

𝑝 𝑌 = −1 (2, 𝑆)𝑇 , 𝒟 ∝ ො𝜋−1 መ𝜃2,1,−1
𝕀 𝑋 1 =2

መ𝜃𝑆,2,−1
𝕀 𝑋 2 =𝑆

=
6

15
×

2

6
×

3

6
=

1

15



Example

◼ Bayes estimation

❑ 计算 class prior
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𝑁1 = 9

𝑁−1 = 6

𝑁 = 15 ത𝜋1 =
𝑁1 + 1

𝑁 + 2
=
10

17

ത𝜋−1 =
𝑁−1 + 1

𝑁 + 2
=

7

17



Example

◼ Bayes estimation

❑ 计算 ҧ𝜃𝑘,𝑗,𝑐 = 𝑝(𝑋 𝑗 = 𝑘|𝑌 = 𝑐)
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ҧ𝜃1,1,1 =
𝑁1,1,1 + 1

𝑁1 + 3
=

3

12

ത𝜃2,1,1 =
𝑁2,1,1 + 1

𝑁1 + 3
=

4

12

ത𝜃3,1,1 =
𝑁3,1,1 + 1

𝑁1 + 3
=

5

12

ത𝜃𝑆,2,1 =
𝑁𝑆,2,1 + 1

𝑁1 + 3
=

2

12

ത𝜃𝑀,2,1 =
𝑁𝑀,2,1 + 1

𝑁1 + 3
=

5

12

ത𝜃𝐿,2,1 =
𝑁𝐿,2,1 + 1

𝑁1 + 3
=

5

12



Example

❑ 计算 ҧ𝜃𝑘,𝑗,𝑐

2025/9/21 Generative Models: Fundamentals and Applications 98

ത𝜃1,1,−1 =
𝑁1,1,−1 + 1

𝑁−1 + 3
=
4

9

ത𝜃2,1,−1 =
𝑁2,1,−1 + 1

𝑁−1 + 3
=
3

9

ത𝜃3,1,−1 =
𝑁3,1,−1 + 1

𝑁−1 + 3
=
2

9

ത𝜃𝑆,2,−1 =
𝑁𝑆,2,−1 + 1

𝑁−1 + 3
=
4

9

ത𝜃𝑀,2,−1 =
𝑁𝑀,2,−1 + 1

𝑁−1 + 3
=
3

9

ത𝜃𝐿,2,−1 =
𝑁𝐿,2,−1 + 1

𝑁−1 + 3
=
2

9



Example

❑ 预测𝑝(𝑌 = 𝑐|𝐱, 𝒟)

所以数据(2, 𝑆)𝑇预测的标签为-1
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𝑝 𝑌 = 1 (2, 𝑆)𝑇 , 𝒟 ∝ ҧ𝜋1 ҧ𝜃2,1,1
𝕀 𝑋 1 =2 ҧ𝜃𝑆,2,1

𝕀 𝑋 2 =𝑆

=
10

17
×

4

12
×

2

12
= 0.0327

𝑝 𝑌 = −1 (2, 𝑆)𝑇 , 𝒟 ∝ ҧ𝜋−1 ҧ𝜃2,1,−1
𝕀 𝑋 1 =2 ҧ𝜃𝑆,2,−1

𝕀 𝑋 2 =𝑆

=
7

17
×

3

9
×

4

9
= 0.0610



Summary

◼ Bayesian concept learning
◼ In discrete hypothesis spaces, update hypothesis posterior using Bayes’ rule

◼ MAP estimation: select the hypothesis with the highest posterior probability

◼ Parametric Bayesian estimation
◼ Beta-Binomial model: extend parameter estimation to the binomial case

◼ Dirichlet-Multinomial model: further extend to the multinomial case

◼ Provides a unified framework from discrete to continuous distributions
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Summary

◼ Naive Bayes classifiers
◼ Generative modeling: estimating class-conditional distribution 𝑝 𝑥 ∣ 𝑦

◼ To simplify, conditional independence assumption

◼ Parameter estimation in Naive Bayes
◼ Point estimates: MLE / MAP — simple and efficient

◼ Bayesian Naive Bayes: keep full posterior distribution over parameters

❑ In prediction, often approximated by posterior mean or MAP for tractability

◼ Key message
◼ Naive Bayes combines Bayesian parameter estimation with generative inference;

Achieves simplicity (𝒪 𝐶𝐷 ) and robustness (priors avoid overfitting)
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Thanks!

Questions?
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