
1复旦大学计算机科学技术学院

Lecture 4/2: Advanced SQL
第4/2讲：高级结构化查询语言

周水庚 / Shuigeng Zhou

邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Outline of the Course
• Part 0: Overview

– Lect. 1 (Feb. 29) - Ch1: Introduction

 Part 1 Relational Databases
– Lect. 2 (Mar. 7) - Ch2: Relational model

(data model, relational algebra)
– Lect. 3 (Mar. 14) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 21) – Ch4/5: Intermediate and

Advanced SQL

• Part 2 Database Design
– Lect. 5 (Mar. 28) - Ch6: Database design

based on E-R model
– Apr. 4 (Tomb-Sweeping Day): no course
– Lect. 6 (Apr. 11) - Ch7: Relational database

design

• Midterm exam: Apr. 18

• Part 3 Data Storage & Indexing
– Lect. 7 (Apr. 25) - Ch12/13: Storage

systems & structures
– Lect. 8 (May 3 -> Apr. 28) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– Lect. 9 (May 10) - Ch15: Query processing
– Lect. 10 (May 17) - Ch16: Query

optimization

• Part 5 Transaction Management
– Lect. 11 (May 24) - Ch17: Transactions

– Lect. 12 (May 31) - Ch18: Concurrency
control

– Lect. 13 (Jun. 7) - Ch19: Recovery system

• Part 6 DB Systems & Course Review
– Lect. 14 (Jun. 14)

Final exam: 13:00-15:00, Jun. 26

3

Outline

 Accessing DB From a Programming Language

• Functions and Procedures

• Triggers

• Recursion in SQL*

• Advanced SQL Features*

4

Accessing DB From a Programming Language

• API (application-program interface) for a program to interact with
a database server

• Application makes calls to
– Connect with the database server

– Send SQL commands to the database server

– Fetch tuples of result one-by-one into program variables

• Various tools:

– Dynamic SQL
• ODBC (Open Database Connectivity) works with C, C++, C#, and Visual Basic.

Other API’s such as ADO.NET sit on top of ODBC

• JDBC (Java Database Connectivity) works with Java

– Embedded SQL

5

JDBC (Java Database Connectivity)
• JDBC

– a Java API for communicating with database systems supporting SQL

– support a variety of features for querying and updating data, and for
retrieving query results

– support metadata retrieval, such as querying about relations present in
the database and the names and types of relation attributes

– The Java program must import java.sql.*, which contains the interface
definitions for the functionality provided by JDBC

• Model for communicating with the database:

– Open a connection

– Create a “Statement” object

– Execute queries using the Statement object to send queries and fetch
results

– Exception mechanism to handle errors

6

JDBC Code
public static void JDBCexample(String dbid, String userid, String passwd){

try {

Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn =
DriverManager.getConnection("jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb",
userid, passwd);

Statement stmt = conn.createStatement();

… Do Actual Work ….

stmt.close();

conn.close();

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);

}

}

Creates a Statement handle (stmt)
on the connection conn

7

JDBC Code (Cont.)
• Update to database

• Execute query and fetch and print results

try { stmt.executeUpdate("insert into account values
('A-9732', 'Perryridge', 1200)");

}

catch (SQLException sqle) {

System.out.println("Could not insert tuple. " + sqle);

}

ResultSet rset = stmt.executeQuery("select branch_name, avg(balance)
from account group by branch_name");

while (rset.next()) {

System.out.println(

rset.getString("branch_name") + " " + rset.getFloat(2));

}

8

JDBC Code Details

• Getting result fields:
rset.getString(“branchname”) and rs.getString(1) are equivalent if
branchname is the first argument of select result.

• Dealing with Null values
if (rset.wasNull())

Systems.out.println(“Got null value”);

9

ODBC

• Open DataBase Connectivity(ODBC) standard

– standard for application program to communicate with a database server

– application program interface (API) to

• open a connection with a database

• send queries and updates

• get back results

• Applications such as GUI, statistical analysis, and spreadsheets can

use ODBC

10

ODBC (Cont.)

• Each database system supporting ODBC provides a "driver" library

that must be linked with the client program

• When client program makes an ODBC API call, the code in the library

communicates with the server to carry out the requested action, and

fetch results

• ODBC program first allocates an SQL environment, then a database

connection handle

11

ODBC (Cont.)

• Opens database connection using SQLConnect(). Parameters for
SQLConnect:

– connection handle

– the server to which to connect

– the user identifier

– password

• Must also specify types of arguments:

– Constant (常数) SQL_NTS denotes that previous argument is a
null-terminated string

12

ODBC Code

int ODBCexample(){

RETCODE error;

HENV env; /* environment */

HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS, "avipasswd", SQL_NTS);

{ …. Do actual work … }

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

13

ODBC Code (Cont.)
• Main body of program

char branchname[80];

float balance;

int lenOut1, lenOut2;

HSTMT stmt;

SQLAllocStmt(conn, &stmt);

char * sqlquery = "select branch_name, sum (balance)
from account group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL_SUCCESS) {
SQLBindCol(stmt, 1, SQL_C_CHAR, branchname, 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {
printf (" %s %g\n", branchname, balance);

}
}

SQLFreeStmt(stmt, SQL_DROP);

14

ODBC Code (Cont.)

• Program sends SQL commands to the database by using

SQLExecDirect

• Result tuples are fetched using SQLFetch()

• SQLBindCol() binds C language variables to attributes of the query

result

– When a tuple is fetched, its attribute values are automatically stored

in corresponding C variables

15

ODBC Code (Cont.)

• Arguments to SQLBindCol()
– ODBC stmt variable, attribute position in query result

– The type conversion from SQL to C

– The address of the variable

– For variable-length types like character arrays
• The maximum length of the variable

• Location to store actual length when a tuple is fetched

• Note: A negative value returned for the length field indicates null value

• Good programming requires checking results of every function call
for errors; we have omitted most checks for brevity

16

More ODBC Features
• Prepared Statement

– SQL statement prepared: compiled at the database

– Can have placeholders(占位符): E.g. insert into account values(?,?,?)

– Repeatedly executed with actual values for the placeholders

• By default, each SQL statement is treated as a separate transaction

that is committed automatically

– Can turn off automatic commit on a connection

• SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

– transactions must then be committed or rolled back explicitly by

• SQLTransact(conn, SQL_COMMIT) or

• SQLTransact(conn, SQL_ROLLBACK)

17

Embedded SQL
• The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, and Java

• A language to which SQL queries are embedded is referred to as a
host language (宿主语言), and the SQL structures permitted in the
host language comprise embedded SQL

• EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding uses # SQL {
…. };)

18

Embedded SQL vs. JDBC or ODBC
• An embedded SQL program must be processed by a special preprocessor

prior to compilation. The preprocessor replaces embedded SQL requests with
host-language declarations and procedure calls that allow runtime execution of
the database accesses.

• Then, the resulting program is compiled by the host-language compiler.

• This is the main distinction between embedded SQL and JDBC or ODBC.

– In JDBC, SQL statements are interpreted at runtime (even if they are
prepared first using the prepared statement feature).

– When embedded SQL is used, some SQL-related errors (including data-
type errors) may be caught at compile time.

19

Example Query
• Find the names and cities of customers with more than the variable

amount dollars in some account

• Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for
select depositor.customer_name, customer_city
from depositor, customer, account
where depositor.customer_name = customer.customer_name

and depositor account_number = account.account_number
and account.balance > :amount

END_EXEC

20

Embedded SQL (Cont.)
• The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

• The fetch statement causes the values of one tuple in the query result to
be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END_EXEC
Repeated calls to fetch get successive tuples in the query result

• The close statement causes the database system to delete the temporary
relation that holds the result of the query

EXEC SQL close c END_EXEC

• Note: above details vary with language. For example, the Java embedding
defines Java iterators to step through result tuples.

21

Updates Through Cursors

• Can update tuples fetched by cursor by declaring that the cursor is
for update

declare c cursor for
select *
from account
where branch_name = ‘Perryridge’
for update

• To update tuple at the current location of cursor c

update account
set balance = balance + 100
where current of c

22

Dynamic SQL
• Allows programs to construct and submit SQL queries at run time

• Example of the use of dynamic SQL within a C program.
char * sqlprog = “update account set balance = balance * 1.05

where account_number = ?”
EXEC SQL prepare dynprog from :sqlprog;

char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;

• The dynamic SQL program contains a ?, which is a placeholder for
a value that is provided when the SQL program is executed

23

Outline

• Accessing DB From a Programming Language

 Functions and Procedures

• Triggers

• Recursion in SQL*

• Advanced SQL Features*

24

Functions and Procedures
• SQL:1999 supports functions and procedures

– Functions/procedures can be written in SQL itself, or in an external programming
language

– Procedures and functions allow “business logic” to be stored in the database, and
executed from SQL statements.

– Functions are particularly useful with specialized data types such as images and
geometric objects

• E.g.: functions to check if polygons overlap, or to compare images for similarity

– Some database systems support table-valued functions, which can return a relation
as a result

• SQL:1999 also supports a rich set of imperative constructs, including
– Loops, if-then-else, assignment

• Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999

25

SQL Functions
• Define a function that, given the name of a customer, returns the count of the

number of accounts owned by the customer.
create function account_count (customer_name varchar(20)) returns integer
begin

declare a_count integer;
select count (*) into a_count
from depositor
where depositor.customer_name = customer_name
return a_count;

end

• Find the name and address of each customer that has more than one account
select customer_name, customer_street, customer_city
from customer
where account_count (customer_name) > 1

26

Table Functions
• SQL:2003 added functions that return a relation as a result

– Example: Return all accounts owned by a given customer

create function accounts_of (customer_name char(20)
returns table (account_number char(10),

branch_name char(15)
balance numeric(12,2))

return table
(select account_number, branch_name, balance
from account A
where exists (

select *
from depositor D
where D.customer_name = accounts_of.customer_name

and D.account_number = A.account_number))

• Usage: select * from table (accounts_of (‘Smith’))

27

Procedural Extensions and Stored Procedures

• SQL provides a module language
– Permits definition of procedures in SQL, with if-then-else statements,

for and while loops, etc.

• Stored procedures
– Can store procedures in the database

– then execute them using the call statement

– permit external applications to operate on the database without knowing
about internal details

28

Procedural Constructs
• Compound statement: begin … end

– May contain multiple SQL statements between begin and end

– Local variables can be declared within a compound statements

• While and repeat statements:

declare n integer default 0;

while n < 10 do

set n = n + 1

end while
repeat

set n = n – 1

until n = 0

end repeat

29

Procedural Constructs (Cont.)

• For loop
– Permits iteration over all results of a query

– E.g., find total of all balances at the Perryridge branch

declare n integer default 0;

for r as
select balance from account
where branch_name = ‘Perryridge’

do

set n = n + r.balance
end for

30

Procedural Constructs (Cont.)
• Conditional statements (if-then-else)

– E.g. To find sum of balances for each of three categories of accounts

(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000

then set l = l + r.balance

elseif r.balance < 5000

then set m = m + r.balance

else set h = h + r.balance

end if

31

Procedural Constructs (Cont.)
• Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_stock condition
declare exit handler for out_of_stock
begin
…
.. signal out-of-stock

end

– The handler here is exit -- causes enclosing begin...end to be exited

– Other actions possible on exception

32

SQL Procedures
• The account_count function could instead be written as procedure:

create procedure account_count_proc (in customer_name varchar(20), out a_count
integer)

begin
select count(*) into a_count
from depositor
where depositor.customer_name = account_count_proc.customer_name

end

• Procedures can be invoked either from an SQL procedure or from embedded SQL, using
the call statement.

declare a_count integer;
call account_count_proc(‘Smith’, a_count);

• Procedures and functions can be invoked also from dynamic SQL.

• SQL:1999 allows more than one function/procedure of the same name (called name
overloading), as long as the number of arguments differ, or at least the types of the
arguments differ.

33

External Language Functions/Procedures

• SQL:1999 permits the use of functions and procedures written in
other languages such as C or C++

• Declaring external language procedures and functions
create procedure account_count_proc(in customer_name varchar(20),
out count integer)
language C
external name ’ /usr/avi/bin/account_count_proc’

create function account_count(customer_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/author_count’

34

External Language Routines (Cont.)

• Benefits of external language functions/procedures:
– more efficient for many operations, and more expressive power

• Drawbacks
– Code to implement function may need to be loaded into database

system and executed in the database system’s address space
• risk of accidental corruption of database structures

• security risk, allowing users access to unauthorized data

– Direct execution in the database system’s space is used when
efficiency is more important than security

35

Security with External Language Routines

• To deal with security problems
– Use sandbox techniques

• that is use a safe language like Java, which cannot be used to
access/damage other parts of the database code

– Or, run external language functions/procedures in a separate process,
with no access to the database process’ memory

• Parameters and results communicated via inter-process communication

• Both have performance overheads

• Many database systems support both above approaches as well as
direct executing in database system address space

36

Outline

• Accessing DB From a Programming Language

• Functions and Procedures

 Triggers

• Recursion in SQL*

• Advanced SQL Features*

37

Triggers (触发器)

• A trigger is a statement that is executed automatically by the

system as a side effect of a modification to the database

• To design a trigger mechanism, we should:

– Specify the conditions under which the trigger is to be executed

– Specify the actions to be taken when the trigger executes

• The above model of triggers is referred to as the event-condition-

action (ECA) model for triggers

38

Trigger Example

• Suppose that instead of allowing negative account balances, the bank

deals with overdrafts (透支) by (actions)

– setting the account balance to zero

– creating a loan in the amount of the overdraft

– giving this loan a loan number identical to the account number of the

overdrawn account

• The condition for executing the trigger is an update (event) to the

account relation that results in a negative balance value

39

Trigger Example in SQL:1999

create trigger overdraft_trigger after update on account
referencing new row as nrow

for each row
when nrow.balance <0
begin atomic
insert into borrower
(select customer_name, account_number
from depositor
where nrow.account_number =depositor.account_number);

insert into loan values
(nrow.account_number, nrow.branch_name, –nrow.balance);
update account set balance = 0
where account.account_number = nrow.account_number

end

40

Triggering Events and Actions in SQL

• Triggering event can be insert, delete or update

• Triggers on update can be restricted to specific attributes

– E.g., after update of balance on account

• Values of attributes before and after an update can be referenced

– referencing old row as: for deletes and updates

– referencing new row as: for inserts and updates

41

Triggering Events and Actions in SQL

• Triggers can be activated before an event, which can serve as extra

constraints

create trigger setnull_trigger before update on r

referencing new row as nrow

for each row

when nrow.phone_number = ‘ ‘

set nrow.phone_number = null

42

Statement Level Triggers

• Instead of executing a separate action for each affected row, a single

action can be executed for all rows affected by a transaction

– Use for each statement instead of for each row

– Use referencing old table or referencing new table to refer to temporary

tables (called transition tables) containing the affected rows

– Can be more efficient when dealing with SQL statements that update a

large number of rows

43

External World Actions
• We sometimes require external world actions to be triggered on a

database update

– E.g. re-ordering an item whose quantity in a warehouse has become

small, or turning on an alarm light,

• Triggers cannot be used to directly implement external world

actions, BUT

– Triggers can be used to record actions-to-be-taken in a separate table

– Have an external process that repeatedly scans the table, carries out

external world actions and deletes action from table

44

External World Actions

• E.g., suppose a warehouse has the following tables

– inventory(item, level): How much of each item is in the warehouse

– minlevel(item, level) : What is the minimum desired level

– reorder(item, amount): What quantity should we re-order

– orders(item, amount) : Orders to be placed

45

External World Actions (Cont.)

create trigger reorder_trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row

when nrow.level < = (select level
from minlevel
where minlevel.item = orow.item)

and orow.level > (select level
from minlevel
where minlevel.item = orow.item)

begin
insert into orders

(select item, amount
from reorder
where reorder.item = orow.item)

end

46

When Not to Use Triggers
• Triggers were used earlier for tasks such as

– maintaining summary data (e.g. total salary of each department)

– Replicating databases by recording changes to special relations and
having a separate process that applies the changes over to a replica

• There are better ways of doing these now:
– Databases today provide built in materialized view facilities to maintain

summary data

– Databases provide built-in support for replication

• Encapsulation facilities can be used instead of triggers in many cases
– Define methods to update fields

– Carry out actions as part of the update methods instead of through a
trigger

47

Outline

• Accessing DB From a Programming Language

• Functions and Procedures

• Triggers

 Recursion in SQL*

• Advanced SQL Features*

48

Recursion (递归) in SQL
• SQL:1999 permits recursive view definition

– E.g., find all employee-manager pairs, where the employee reports to the manager
directly or indirectly (that is manager’s manager, manager’s manager’s manager,
etc.)

with recursive empl (employee_name, manager_name) as (
select employee_name, manager_name
from manager /*a base query */

union
select manager.employee_name, empl.manager_name
from manager, empl /*a recursive query*/
where manager.manager_name = empl.employe_name)

select *
from empl

Note: This example view empl is called the transitive closure (传递闭包) of the
manager relation

49

The Power of Recursion

• Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or
iteration.
– Intuition: Without recursion, a non-recursive non-iterative program can

perform only a fixed number of joins of manager with itself

• This can give only a fixed number of levels of managers

• Given a program we can construct a database with a greater number
of levels of managers on which the program will not work

50

The Power of Recursion

• Computing transitive closure
– The next slide shows a manager relation

– Each step of the iterative process constructs an extended version of
empl from its recursive definition.

– The final result is called the fixed point of the recursive view
definition.

• Recursive views are required to be monotonic. That is, if we add
tuples to manger the view contains all of the tuples it contained
before, plus possibly more

51

Example of Fixed-Point Computation

52

Outline

• Accessing DB From a Programming Language

• Functions and Procedures

• Triggers

• Recursion in SQL*

 Advanced SQL Features*

53

Advanced SQL Features
• Create a table with the same schema as an existing table:

create table temp_account like account

• SQL:2003 allows subqueries to occur anywhere a value is required
provided the subquery returns only one value. This applies to updates
as well

• SQL2003 allows subqueries in the from clause to access attributes of
other relations in the from clause using the lateral(横向) construct:

select C.customer_name, num_accounts
from customer C,

lateral (select count(*)
from account A
where A.customer_name = C.customer_name)

as this_customer (num_accounts)

54

Advanced SQL Features (Cont.)

• Merge construct allows batch processing of updates

– E.g., relation funds_received (account_number, amount) has batch of

deposits to be added to the proper account in the account relation

merge into account as A

using (select *

from funds_received) as F

on (A.account_number = F.account_number)

when matched then

update set balance = balance + F.amount

55

Homework

• Further Reading

– Chapter 5

56

End of Lecture 4/2

