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Outline of the Course 
• Part 0: Overview

– Lect. 1 (Feb. 29) - Ch1: Introduction 

 Part 1  Relational Databases
– Lect. 2 (Mar. 7) - Ch2: Relational model 

(data model, relational algebra) 
– Lect. 3 (Mar. 14) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 21) – Ch4/5: Intermediate and 

Advanced SQL 

• Part 2  Database Design
– Lect. 5 (Mar. 28) - Ch6: Database design 

based on E-R model
– Apr. 4 (Tomb-Sweeping Day): no course
– Lect. 6 (Apr. 11) - Ch7: Relational database 

design 

• Midterm exam:  Apr. 18

• Part 3  Data Storage & Indexing 
– Lect. 7 (Apr. 25) - Ch12/13: Storage 

systems & structures
– Lect. 8 (May 3 -> Apr. 28) - Ch14: Indexing

• Part 4  Query Processing & Optimization 
– Lect. 9 (May 10) - Ch15: Query processing
– Lect. 10 (May 17 ) - Ch16: Query 

optimization 

• Part 5 Transaction Management
– Lect. 11 (May 24) - Ch17: Transactions  

– Lect. 12 (May 31) - Ch18: Concurrency 
control

– Lect. 13 (Jun. 7) - Ch19: Recovery system

• Part 6 DB Systems & Course Review
– Lect. 14 (Jun. 14)

Final exam: 13:00-15:00, Jun. 26
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Outline

 Accessing DB From a Programming Language 

• Functions and Procedures

• Triggers

• Recursion in SQL*

• Advanced SQL Features*
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Accessing DB From a Programming Language 

• API (application-program interface) for a program to interact with 
a database server

• Application makes calls to
– Connect with the database server

– Send SQL commands to the database server

– Fetch tuples of result one-by-one into program variables

• Various tools:

– Dynamic SQL
• ODBC (Open Database Connectivity) works with C, C++, C#, and Visual Basic.  

Other API’s such as ADO.NET sit on top of ODBC

• JDBC (Java Database Connectivity) works with Java

– Embedded SQL
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JDBC (Java Database Connectivity)
• JDBC

– a Java API for communicating with database systems supporting SQL

– support a variety of features for querying and updating data, and for 
retrieving query results

– support metadata retrieval, such as querying about relations present in 
the database and the names and types of relation attributes

– The Java program must import java.sql.*, which contains the interface 
definitions for the functionality provided by JDBC

• Model for communicating with the database:

– Open a connection

– Create a “Statement” object

– Execute queries using the Statement object to send queries and fetch
results

– Exception mechanism to handle errors
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JDBC Code
public static void JDBCexample(String dbid, String userid, String passwd){ 

try { 

Class.forName ("oracle.jdbc.driver.OracleDriver"); 

Connection conn = 
DriverManager.getConnection("jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb", 
userid, passwd); 

Statement stmt = conn.createStatement(); 

… Do Actual Work ….

stmt.close();

conn.close();

}

catch (SQLException sqle) { 

System.out.println("SQLException : " + sqle);

}

}

Creates a Statement handle (stmt) 
on the connection conn
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JDBC Code (Cont.)
• Update to database

• Execute query and fetch and print results 

try { stmt.executeUpdate(  "insert into account values
('A-9732', 'Perryridge', 1200)"); 

} 

catch (SQLException sqle) { 

System.out.println("Could not insert tuple. " + sqle);

}

ResultSet rset = stmt.executeQuery( "select branch_name, avg(balance)  
from account group by branch_name");

while (rset.next()) {

System.out.println(

rset.getString("branch_name") + "  " + rset.getFloat(2));

}
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JDBC Code Details 

• Getting result fields:
rset.getString(“branchname”) and rs.getString(1) are equivalent if 
branchname is the first argument of select result.

• Dealing with Null values
if (rset.wasNull()) 

Systems.out.println(“Got null value”);
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ODBC

• Open DataBase Connectivity(ODBC) standard 

– standard for application program to communicate with a database server

– application program interface (API) to 

• open a connection with a database

• send queries and updates

• get back results

• Applications such as GUI, statistical analysis, and spreadsheets can 

use ODBC
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ODBC  (Cont.)

• Each database system supporting ODBC provides a "driver" library 

that must be linked with the client program

• When client program makes an ODBC API call, the code in the library 

communicates with the server to carry out the requested action, and 

fetch results

• ODBC program first allocates an SQL environment, then a database 

connection handle
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ODBC  (Cont.)

• Opens database connection using SQLConnect(). Parameters for 
SQLConnect:

– connection handle

– the server to which to connect

– the user identifier

– password 

• Must also specify types of arguments:

– Constant (常数) SQL_NTS denotes that previous argument is a 
null-terminated string
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ODBC Code

int ODBCexample(){

RETCODE error;

HENV    env;     /* environment */ 

HDBC    conn;  /* database connection */ 

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS, "avipasswd", SQL_NTS); 

{ …. Do actual work … }

SQLDisconnect(conn); 

SQLFreeConnect(conn); 

SQLFreeEnv(env); 

}
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ODBC Code (Cont.)
• Main body of program

char branchname[80];

float  balance;

int  lenOut1, lenOut2;

HSTMT   stmt;  

SQLAllocStmt(conn, &stmt);

char * sqlquery = "select branch_name, sum (balance) 
from account group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL_SUCCESS) {
SQLBindCol(stmt, 1, SQL_C_CHAR, branchname, 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {
printf (" %s  %g\n", branchname, balance);

}
} 

SQLFreeStmt(stmt, SQL_DROP); 
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ODBC Code (Cont.)

• Program sends SQL commands to the database by using 

SQLExecDirect

• Result tuples are fetched using SQLFetch()

• SQLBindCol() binds C language variables to attributes of the query 

result 

– When a tuple is fetched, its attribute values are automatically stored 

in corresponding C variables
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ODBC Code (Cont.)

• Arguments to SQLBindCol()
– ODBC stmt variable, attribute position in query result

– The type conversion from SQL to C

– The address of the variable

– For variable-length types like character arrays 
• The maximum length of the variable 

• Location to store actual length when a tuple is fetched

• Note: A negative value returned for the length field indicates null value

• Good programming requires checking results of every function call 
for errors; we have omitted most checks for brevity
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More ODBC Features
• Prepared Statement

– SQL statement prepared: compiled at the database

– Can have placeholders(占位符):  E.g.  insert into account values(?,?,?)

– Repeatedly executed with actual values for the placeholders

• By default, each SQL statement is treated as a separate transaction 

that is committed automatically

– Can turn off automatic commit on a connection

• SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)} 

– transactions must then be committed or rolled back explicitly by 

• SQLTransact(conn, SQL_COMMIT) or

• SQLTransact(conn, SQL_ROLLBACK)
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Embedded SQL
• The SQL standard defines embeddings of SQL in a variety of 

programming languages such as C, and Java

• A language to which SQL queries are embedded is referred to as a 
host language (宿主语言), and the SQL structures permitted in the 
host language comprise embedded SQL

• EXEC SQL statement is used to identify embedded SQL request to 
the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding uses # SQL { 
…. }; ) 
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Embedded SQL vs. JDBC or ODBC
• An embedded SQL program must be processed by a special preprocessor 

prior to compilation. The preprocessor replaces embedded SQL requests with 
host-language declarations and procedure calls that allow runtime execution of 
the database accesses. 

• Then, the resulting program is compiled by the host-language compiler. 

• This is the main distinction between embedded SQL and JDBC or ODBC. 

– In JDBC, SQL statements are interpreted at runtime (even if they are 
prepared first using the prepared statement feature). 

– When embedded SQL is used, some SQL-related errors (including data-
type errors) may be caught at compile time.
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Example Query
• Find the names and cities of customers with more than the variable 

amount dollars in some account

• Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for 
select depositor.customer_name, customer_city
from depositor, customer, account
where depositor.customer_name = customer.customer_name

and depositor account_number = account.account_number
and account.balance > :amount

END_EXEC



20

Embedded SQL (Cont.)
• The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

• The fetch statement causes the values of one tuple in the query result to 
be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END_EXEC
Repeated calls to fetch get successive tuples in the query result

• The close statement causes the database system to delete the temporary 
relation that holds the result of the query

EXEC SQL close c END_EXEC

• Note: above details vary with language. For example, the Java embedding 
defines Java iterators to step through result tuples.
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Updates Through Cursors

• Can update tuples fetched by cursor by declaring that the cursor is 
for update

declare c cursor for
select *
from account
where branch_name = ‘Perryridge’
for update

• To update tuple at the current location of cursor c

update account
set balance = balance + 100
where current of c



22

Dynamic SQL
• Allows programs to construct and submit SQL queries at run time

• Example of the use of dynamic SQL within a C program.
char *  sqlprog = “update account set balance = balance * 1.05

where account_number = ?”
EXEC SQL prepare dynprog from :sqlprog;

char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;

• The dynamic SQL program contains a ?, which is a placeholder for 
a value that is provided when the SQL program is executed
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Outline

• Accessing DB From a Programming Language 

 Functions and Procedures

• Triggers

• Recursion in SQL*

• Advanced SQL Features*
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Functions and Procedures
• SQL:1999 supports functions and procedures

– Functions/procedures can be written in SQL itself, or in an external programming 
language

– Procedures and functions allow “business logic” to be stored in the database, and 
executed from SQL statements.

– Functions are particularly useful with specialized data types such as images and 
geometric objects

• E.g.: functions to check if polygons overlap, or to compare images for similarity

– Some database systems support table-valued functions, which can return a relation 
as a result

• SQL:1999 also supports a rich set of imperative constructs, including
– Loops, if-then-else, assignment

• Many databases have proprietary procedural extensions to SQL that 
differ from SQL:1999
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SQL Functions
• Define a function that, given the name of a customer, returns the count of the 

number of accounts owned by the customer.
create function account_count (customer_name varchar(20)) returns integer
begin

declare a_count integer;
select count (* ) into a_count
from depositor
where depositor.customer_name = customer_name
return a_count;

end

• Find the name and address of each customer that has more than one account
select customer_name, customer_street, customer_city
from customer
where account_count (customer_name ) > 1
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Table Functions
• SQL:2003 added functions that return a relation as a result

– Example: Return all accounts owned by a given customer

create function accounts_of (customer_name char(20)
returns table (  account_number char(10),

branch_name char(15)
balance numeric(12,2)) 

return table
(select account_number, branch_name, balance
from account A
where exists (

select *
from  depositor D
where D.customer_name = accounts_of.customer_name

and D.account_number = A.account_number ))

• Usage:  select * from table (accounts_of (‘Smith’))
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Procedural Extensions and Stored Procedures

• SQL provides a module language 
– Permits definition of procedures in SQL, with if-then-else statements, 

for and while loops, etc.

• Stored procedures
– Can store procedures in the database 

– then execute them using the call statement

– permit external applications to operate on the database without knowing 
about internal details
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Procedural Constructs
• Compound statement: begin … end 

– May contain multiple SQL statements between begin and end

– Local variables can be declared within a compound statements

• While and repeat statements:

declare n integer default 0;

while n < 10 do

set n = n + 1

end while
repeat

set n = n  – 1

until n = 0

end repeat
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Procedural Constructs (Cont.)

• For loop
– Permits iteration over all results of a query

– E.g., find total of all balances at the Perryridge branch

declare n  integer default 0;

for r  as
select balance from account
where branch_name = ‘Perryridge’

do

set n = n + r.balance
end for
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Procedural Constructs (Cont.)
• Conditional statements  (if-then-else)

– E.g. To find sum of balances for each of three categories of accounts 

(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000

then set l = l + r.balance

elseif r.balance < 5000

then set m = m + r.balance

else set h = h + r.balance

end if 
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Procedural Constructs (Cont.)
• Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_stock condition
declare exit handler for out_of_stock
begin
…
..  signal out-of-stock

end

– The handler here is exit -- causes enclosing begin...end to be exited

– Other actions possible on exception
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SQL Procedures
• The account_count function could instead be written as procedure:

create procedure account_count_proc (in customer_name varchar(20), out a_count
integer)

begin
select count(*) into a_count
from depositor
where depositor.customer_name = account_count_proc.customer_name

end

• Procedures can be invoked either from an SQL procedure or from embedded SQL, using 
the call statement.

declare a_count integer;
call account_count_proc( ‘Smith’, a_count);

• Procedures and functions can be invoked also from dynamic SQL.

• SQL:1999 allows more than one function/procedure of the same name (called name 
overloading), as long as the number of arguments differ, or at least the types of the 
arguments differ.
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External Language Functions/Procedures

• SQL:1999 permits the use of functions and procedures written in 
other languages such as C or C++ 

• Declaring external language procedures and functions
create procedure account_count_proc(in customer_name varchar(20),  
out count integer)
language C
external name ’ /usr/avi/bin/account_count_proc’

create function account_count(customer_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/author_count’
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External Language Routines (Cont.)

• Benefits of external language functions/procedures:  
– more efficient for many operations, and more expressive power

• Drawbacks
– Code to implement function may need to be loaded into database 

system and executed in the database system’s address space
• risk of accidental corruption of database structures

• security risk, allowing users access to unauthorized data

– Direct execution in the database system’s space is used when 
efficiency is more important than security
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Security with External Language Routines

• To deal with security problems
– Use sandbox techniques

• that is use a safe language like Java, which cannot be used to 
access/damage other parts of the database code

– Or, run external language functions/procedures in a separate process, 
with no access to the database process’ memory

• Parameters and results communicated via inter-process communication

• Both have performance overheads

• Many database systems support both above approaches as well as 
direct executing in database system address space
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Outline

• Accessing DB From a Programming Language 

• Functions and Procedures

 Triggers

• Recursion in SQL*

• Advanced SQL Features*
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Triggers (触发器)

• A trigger is a statement that is executed automatically by the 

system as a side effect of a modification to the database

• To design a trigger mechanism, we should:

– Specify the conditions under which the trigger is to be executed

– Specify the actions to be taken when the trigger executes

• The above model of triggers is referred to as the event-condition-

action (ECA) model for triggers
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Trigger Example 

• Suppose that instead of allowing negative account balances, the bank 

deals with overdrafts (透支) by (actions) 

– setting the account balance to zero

– creating a loan in the amount of the overdraft

– giving this loan a loan number identical to the account number of the 

overdrawn account

• The condition for executing the trigger is an update (event) to the 

account relation that results in a negative balance value
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Trigger Example in SQL:1999

create trigger overdraft_trigger after update on account 
referencing new row as nrow

for each row
when nrow.balance <0
begin atomic
insert into borrower 
(select customer_name, account_number
from depositor
where nrow.account_number =depositor.account_number);

insert into loan  values
(nrow.account_number, nrow.branch_name, –nrow.balance);
update account set balance = 0
where account.account_number = nrow.account_number

end
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Triggering Events and Actions in SQL

• Triggering event can be insert, delete or update

• Triggers on update can be restricted to specific attributes

– E.g., after update of balance on account

• Values of attributes before and after an update can be referenced

– referencing old row as: for deletes and updates

– referencing new row as: for inserts and updates
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Triggering Events and Actions in SQL

• Triggers can be activated before an event, which can serve as extra 

constraints

create trigger setnull_trigger before update on r

referencing new row as nrow

for each row

when nrow.phone_number = ‘ ‘

set nrow.phone_number = null



42

Statement Level Triggers

• Instead of executing a separate action for each affected row, a single 

action can be executed for all rows affected by a transaction

– Use for each statement instead of for each row

– Use referencing old table or referencing new table to refer to temporary 

tables  (called transition tables) containing the affected rows

– Can be more efficient when dealing with SQL statements that update a 

large number of rows
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External World Actions
• We sometimes require external world actions to be triggered on a 

database update

– E.g. re-ordering an item whose quantity in a warehouse has become 

small, or turning on an alarm light, 

• Triggers cannot be used to directly implement external world 

actions, BUT

– Triggers can be used to record actions-to-be-taken in a separate table

– Have an external process that repeatedly scans the table, carries out 

external world actions and deletes action from table
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External World Actions

• E.g., suppose a warehouse has the following tables

– inventory(item, level):  How much of each item is in the warehouse

– minlevel(item, level) :   What is the minimum desired level

– reorder(item, amount):  What quantity should we re-order

– orders(item, amount) :  Orders to be placed
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External World Actions (Cont.)

create trigger reorder_trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row

when nrow.level < = (select level
from minlevel
where minlevel.item = orow.item)

and orow.level > (select level
from minlevel
where minlevel.item = orow.item)

begin
insert into orders

(select item, amount
from reorder
where reorder.item = orow.item)

end
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When Not to Use Triggers
• Triggers were used earlier for tasks such as 

– maintaining summary data (e.g. total salary of each department)

– Replicating databases by recording changes to special relations and 
having a separate process that applies the changes over to a replica 

• There are better ways of doing these now:
– Databases today provide built in materialized view facilities to maintain 

summary data

– Databases provide built-in support for replication

• Encapsulation facilities can be used instead of triggers in many cases
– Define methods to update fields

– Carry out actions as part of the update methods instead of through a 
trigger 
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Outline

• Accessing DB From a Programming Language 

• Functions and Procedures

• Triggers

 Recursion in SQL*

• Advanced SQL Features*
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Recursion (递归) in SQL
• SQL:1999 permits recursive view definition

– E.g., find all employee-manager pairs, where the employee reports to the manager 
directly or indirectly (that is manager’s manager, manager’s manager’s manager, 
etc.)

with recursive empl (employee_name, manager_name ) as (
select employee_name, manager_name
from manager     /*a base query */

union
select manager.employee_name, empl.manager_name
from manager, empl /*a recursive query*/
where manager.manager_name = empl.employe_name)

select * 
from empl

Note: This example view empl is called the transitive closure (传递闭包) of the 
manager relation
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The Power of Recursion

• Recursive views make it possible to write queries, such as transitive 
closure queries, that cannot be written without recursion or 
iteration.
– Intuition:  Without recursion, a non-recursive non-iterative program can 

perform only a fixed number of joins of manager with itself

• This can give only a fixed number of levels of managers

• Given a program we can construct a database with a greater number 
of levels of managers on which the program will not work
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The Power of Recursion

• Computing transitive closure
– The next slide shows a manager relation

– Each step of the iterative process constructs an extended version of 
empl from its recursive definition.  

– The final result is called the fixed point  of the recursive view 
definition.

• Recursive views are required to be monotonic.  That is, if we add 
tuples to manger the view contains all of the tuples it contained 
before, plus possibly more
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Example of Fixed-Point Computation
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Outline

• Accessing DB From a Programming Language 

• Functions and Procedures

• Triggers

• Recursion in SQL*

 Advanced SQL Features*
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Advanced SQL Features
• Create a table with the same schema as an existing table:

create table temp_account like account

• SQL:2003 allows subqueries to occur anywhere a value is required 
provided the subquery returns only one value.  This applies to updates 
as well

• SQL2003 allows subqueries in the from clause to access attributes of 
other relations in the from clause using the lateral(横向) construct:

select C.customer_name, num_accounts
from customer C, 

lateral (select count(*) 
from account A
where A.customer_name = C.customer_name )

as this_customer (num_accounts )
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Advanced SQL Features (Cont.)

• Merge construct allows batch processing of updates

– E.g., relation funds_received (account_number, amount ) has batch of 

deposits to be added to the proper account in the account relation

merge into account as A

using (select *

from funds_received) as F 

on (A.account_number = F.account_number )

when matched then

update set balance = balance + F.amount
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Homework

• Further Reading

– Chapter 5
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End of Lecture 4/2


