
1复旦大学计算机科学技术学院

Lecture 13: Concurrency Control
第13讲：并发控制

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate &

Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 8 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no class
– Lect. 10 (May 8) - Ch15: Query processing
– Lect. 11 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions
– Lect. 13 (May22/29) - Ch18: Concurrency

control
– Lect. 14 (Jun. 5) - Ch19: Recovery system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

Outline

 Concurrent Control
• Lock-based Protocols
• Graph-based Protocols
• Multiple Granularity
• Deadlock Handling

4

Concurrent Control Problems
• Problems caused by concurrent transactions

– Lost Update (丢失修改)

– Non-repeatable Read (不可重复读)

– Dirty Read (读“脏”数据)

• Symbols

– R(x): read x

– W(x): write x

5

Lost Update

• T1 and T2 read the same data

item and modify it

• The committed result of T2

eliminates the update of T1

– If T2 commits before T1, the

update of T1 will be lost

T1 T2

① R(A)=16

② R(A)=16

③ A←A-1
 W(A)=15

④ A←A-1
W(A)=15

6

Non-repeatable Read
• T1 reads B=100

• T2 reads B, then updates B=200,

and writes back B

• T1 reads B again, and B=200, not

the same as the first read

• Phantom Phenomenon (幻影现象)
– records disappear or new records

appear for the same query

T1 T2

① R(A)=50
 R(B)=100
 sum=150
② R(B)=100

B←B*2
W(B)=200

③ R(A)=50
 R(B)=200
 sum=250
(sum is not

correct)

7

Dirty Read

• T1 modifies C to 200, T2 reads C

as 200

• T1 rolls back for some reason and

its modification also rolls back.

Then C recovers to 100

• T2 reads C as 200, which is not

consistent with the database

T1 T2

① R(C)=100
 C←C*2
 W(C)=200
② R(C)=200

③ ROLLBACK
 C recover

to 100

8

Outline

• Concurrent Control
 Lock-based Protocols
• Graph-based Protocols
• Multiple Granularity
• Deadlock Handling

9

Lock-based Protocols
• A lock is a mechanism to control concurrent access to a data item

• Data items can be locked in two modes

– exclusive (X) mode (排他型). Data item can be read and written. X-lock

is requested using lock-X instruction

– shared (S) mode (共享型). Data item can only be read. S-lock is

requested using lock-S instruction

• Lock requests are made to concurrency control manager (并发控制管

理器). Transaction can proceed only after the request is granted.

10

Lock-based Protocols (Cont.)
• Lock-compatibility matrix (锁相容性矩阵)

• A transaction may be granted a lock on a data item if the
requested lock is compatible with locks already held on the data item
by other transactions.

• If a lock cannot be granted, the requesting transaction waits till all
incompatible locks have been released. The lock is then granted.

11

No Lost Update
T1 T2

① Xlock A
② R(A)=16

Xlock A
③ A←A-1 wait
 W(A)=15 wait
 Commit wait
 Unlock A wait
④ Get Xlock A

R(A)=15
A←A-1

⑤ W(A)=14
Commit
Unlock A

12

Repeatable Read
T1 T2

① Slock A
 Slock B
 R(A)=50
 R(B)=100
 sum=150
② Xlock B

wait
wait

③ R(A)=50 wait
 R(B)=100 wait
 sum=150 wait
 Commit wait
 Unlock A wait
 Unlock B wait
④ get XlockB

R(B)=100
B←B*2

⑤ W(B)=200
Commit
Unlock B

13

No Dirty Read
T1 T2

① Xlock C
 R(C)=100
 C←C*2
 W(C)=200
② Slock C

wait
③ ROLLBACK wait
 (C rec. 100) wait
 Unlock C wait
④ Get Slock C

R(C)=100
⑤ Commit C

Unlock C

14

Lock-based Protocols
 T: lock-S(A);

 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
• Locking as above is not sufficient to guarantee serializability. If A and B get

updated in-between the read of A and B, the displayed sum would be wrong
• A locking protocol is a set of rules

– followed by all transactions while requesting and releasing locks
– locking protocols restrict the set of possible schedules

If A is updated here, A+B will be wrong

15

Deadlock (死锁)
• Consider the following partial schedule

• Such a situation is called a deadlock
– To handle the deadlock, T3 or T4 must be rolled back and release its locks
– Deadlock exists in most locking protocols

16

Starvation (饥饿)

• Starvation

– E.g., a transaction may be waiting for an X-lock on a data item, while a

sequence of other transactions request and are granted an S-lock on the

same data item

– The same transaction is repeatedly rolled back due to deadlocks

• Concurrency control manager can be designed to prevent starvation

17

Two-Phase Locking Protocol（两阶段加锁协议）

• 2PL is a protocol which ensures conflict-serializable schedules

– Phase 1: Growing Phase (增长阶段)

• transaction can obtain locks but cannot release locks

– Phase 2: Shrinking Phase (缩减阶段）

• transaction can release locks but cannot obtain locks

• The protocol assures serializability. It can be proved that the transactions

can be serialized in the order of their lock points (封锁点)

– Lock point: 事务获得最后加锁的位置

J. D. Ullman. Principles of Databse and Knowledge-base Systems. 1988

18

The Two-Phase Locking Protocol

• Satisfy 2PL

Slock A Slock B Xlock C Unlock B Unlock A Unlock C；

|← Growing →| |← Shrinking →|

• Not satisfy 2PL

Slock A Unlock A Slock B Xlock C Unlock C Unlock B；

19

The Two-Phase Locking Protocol
T1 T2

Slock(A)
R(A=260)

Slock(C)
R(C=300)

Xlock(A)
W(A=160)

Xlock(C)
W(C=250)
Slock(A)

Slock(B) wait
R(B=1000) wait
Xlock(B) wait
W(B=1100) Wait
Unlock(A) wait

R(A=160)
Xlock(A)

Unlock(B)
W(A=210)
Unlock(C)
Unlock(A)

2PL ensures serializable schedules

20

The Two-Phase Locking Protocol
• Two-phase locking cannot avoid deadlocks

• Example:

21

The Two-Phase Locking Protocol
• Cascading roll-back is possible under two-phase locking

– To avoid this, follow a modified protocol called strict two-phase locking

(严格两阶段封锁)

– A transaction must hold all its exclusive locks till it commits

22

The Two-Phase Locking Protocol
• Rigorous two-phase locking (强两阶段封锁) is even stricter

– all locks are held till commit/abort

– transactions can be serialized in the order in which they commit

23

Lock Conversions (锁转换)

• Two-phase locking with lock

conversions
– Upgrade (升级)

• lock-S -> lock-X

– Downgrade (降级)

• lock-X -> lock-S

• This protocol assures

serializability

T8： read(a1)
 read(a2)
 …
 read(an)
 write(a1)

T9: read(a1)
 read(a2)
 display(a1+a2)

24

Lock Conversions (锁转换)

• Two-phase locking with lock conversions
 – First Phase:

• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

 – Second Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability

25

Automatic Acquisition of Locks
• A transaction �� issues the standard read/write instruction, without

explicit locking calls
• The operation read(D) is processed as:

if �� has a lock on D
then
 read(D)

 else
 begin
 if necessary wait until no other transactions have a lock-X on D
 grant �� a lock-S on D;
 read(D)
 end

26

Automatic Acquisition of Locks (Cont.)
• write(D) is processed as:
 if �� has a lock-X on D
 then
 write(D)
 else
 begin
 if necessary wait until no other transactions have any lock on D
 if �� has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant �� a lock-X on D
 write(D)
 end;
• All locks are released after commit

27

Implementation of Locking
• Lock manager (锁管理器)

– A lock manager can be implemented as a separate process to which transactions
send lock and unlock requests

– The lock manager replies to a lock request by sending a lock grant messages (or a
message asking the transaction to roll back, in case of a deadlock)

– The requesting transaction waits until its request is answered

– The lock manager maintains a data-structure called a lock table (锁表) to record
granted locks and pending requests

• The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

28

Lock Table
• Black rectangles indicate granted locks, and white

ones indicate waiting requests
• Lock table also records the type of lock granted or

requested
• New request is added to the end of the queue of

requests for the data item, and granted if it is
compatible with all earlier locks

• Unlock requests result in the related locks being
deleted, and waiting requests are checked to see if
they can now be granted

• If transaction aborts, all waiting or granted requests
of the transaction are deleted
– lock manager may keep a list of locks held by

each transaction, to implement this efficiently

29

Outline

• Concurrent Control
• Lock-based Protocols
 Graph-based Protocols
• Multiple Granularity
• Deadlock Handling

30

Graph-based Protocols
• Graph-based protocols are an alternative to two-phase locking

– Impose a partial ordering →(偏序) on the set � = {��, ��,…, ��} of all

data items

– If �� → �� then any transaction accessing both �� and �� must access ��

before accessing ��

– Implies that the set D may now be viewed as a directed acyclic graph,

called a database graph

• The tree-protocol is a simple kind of graph protocol.

31

Tree Protocol

• Only exclusive locks are allowed

– The first lock by �� may be on any data item

– Subsequently, a data Q can be locked by

�� only if the parent of Q is currently locked

by ��

– Data items may be unlocked at any time

– A data item cannot be relocked by ��

32

Graph-based Protocols

T11 -> T10 ->T12 ->T13

T11 -> T10 ->T13 ->T12

33

Graph-based Protocols
• The tree protocol ensures conflict serializability as well as

freedom from deadlock

• Unlocking may occur earlier than in the two-phase locking protocol-2PL
– shorter waiting times, and increase in concurrency

– protocol is deadlock-free, no rollbacks are required

– the abort of a transaction can still lead to cascading rollbacks

• However, may have to lock data items that it does not access
– increased locking overhead, and additional waiting time

– potential decrease in concurrency

34

Timestamp-based Protocols
• Each transaction is issued a timestamp when it enters the system.

If an old transaction �� has timestamp TS(��), a new transaction ��
is assigned timestamp TS(��) such that TS(��) <TS(��).

• The protocol manages concurrent execution such that the
timestamps determine the serializability order

• In order to assure such behavior, the protocol maintains for each
data Q two timestamp values:
– W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q) successfully
– R-timestamp(Q) is the largest time-stamp of any transaction that executed

read(Q) successfully.

35

Timestamp-based Protocols (Cont.)
• The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order

• Suppose a transaction �� issues a read(Q)

– If TS(��) < W-timestamp(Q), then �� needs to read a value of Q that

was already overwritten

• the read operation is rejected, and �� is rolled back

– If TS(��) ≥ W-timestamp(Q), then the read operation is executed,

and R-timestamp(Q) is set to max(R-timestamp(Q), TS(��))

36

Timestamp-based Protocols (Cont.)
• Suppose that transaction �� issues write(Q).

– If TS(��) < R-timestamp(Q), then the value of Q that �� is producing
was needed previously, and the system assumed that that value would
never be produced.

• Hence, the write operation is rejected, and �� is rolled back.

– If TS(��) < W-timestamp(Q), then �� is attempting to write an
obsolete value of Q.

• Hence, this write operation is rejected, and �� is rolled back.

– Otherwise, the write operation is executed, and W-timestamp(Q) is
set to TS(��).

37

Timestamp-based Protocols (Cont.)

T25 -> T26

38

Timestamp-based Protocols (Cont.)

• The timestamp-ordering protocol guarantees serializability since all the
arcs in the precedence graph are of the form:

– Thus, there will be no cycles in the precedence graph
• Timestamp protocol ensures freedom from deadlock as no transaction ever

waits
• But the schedule may not be cascade-free, and may not even be recoverable

– Why? --- no constraint on the commit order

transaction
with smaller
timestamp

transaction
with larger
timestamp

39

Outline

• Concurrent Control
• Lock-based Protocols
• Graph-based Protocols
 Multiple Granularity
• Deadlock Handling

40

Multiple Granularity
• Allow data items to be of various sizes and define a hierarchy of data

granularities
– Database -> tables -> tuples -> attributes

• Can be represented graphically as a tree
• When a transaction locks a node in the tree explicitly, it implicitly

locks all the node's descendants in the same mode
• Granularity of locking:

– fine granularity (lower in tree): high concurrency, high locking overhead
– coarse granularity (higher in tree): low locking overhead, low concurrency

41

Example of Granularity Hierarchy
• The highest level in the example hierarchy is the entire database.
• The levels below are of type area, file (table) and record (tuple) in

that order.

How to efficiently
determine whether

a lock can be
imposed on a node?

42

Intention Lock (意向锁) Modes
• Three additional lock modes with multiple granularity:

– intention-shared (IS)
• indicates explicit locking at a lower level of the tree but only with shared

locks
– intention-exclusive (IX)

• indicates explicit locking at a lower level with exclusive or shared locks
– shared and intention-exclusive (SIX)

• the subtree rooted by that node is locked explicitly in shared mode and
explicit locking is being done at a lower level with exclusive-mode locks

• Intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

43

Compatibility Matrix with Intention Lock Modes

IS IX S SIX X

IS

IX

S

SIX

X

44

Multiple Granularity Locking Scheme
• Transaction �� can lock a node Q, using the following rules:

– The lock compatibility matrix must be observed.
– The root of the tree must be locked first, and may be locked in any mode.
– A node Q can be locked by �� in S or IS mode only if the parent of Q is currently

locked by �� in either IX or IS mode.
– A node Q can be locked by �� in X, SIX, or IX mode only if the parent of Q is

currently locked by �� in either IX or SIX mode.
– �� can lock a node only if it has not previously unlocked any node (that is, �� is

two-phase).
– �� can unlock a node Q only if none of the children of Q are currently locked by ��.

• Locks are acquired in root-to-leaf order, whereas they are released in leaf-
to-root order

• The multiple-granularity locking protocol can ensure serializability
• Deadlock is possible in the multiple-granularity protocol, as it is in the

two-phase locking protocol

45

Multiple Granularity Locking Scheme
• Suppose that transaction T21 reads record ra2

in file Fa. Then, T21 needs to lock the
database, area A1, and Fa in IS mode (and in
that order), and finally to lock ra2 in S mode.

• Suppose that transaction T22 modifies record
ra9 in file Fa. Then, T22 needs to lock the
database, area A1, and file Fa (and in that
order) in IX or SIX mode, and finally to lock
ra9 in X mode.

• Suppose that transaction T23 reads all the
records in file Fa. Then, T23 needs to lock the
database and area A1 (and in that order) in IS
mode, and finally to lock Fa in S mode.

• Suppose that transaction T24 reads the
entire database. It can do so after locking the
database in S mode

T21 reads ra2

IS mode

IS mode

IS mode

S mode

46

Outline

• Concurrent Control
• Lock-based Protocols
• Graph-based Protocols
• Multiple Granularity
 Deadlock Handling

47

Deadlock Handling
• Consider the following two transactions:

T1: write(X) T2: write(Y)
 write(Y) write(X)

• Schedule with deadlock

T1 T2

lock-X on X
write (X)

lock-X on Y
write (Y)
wait for lock-X on X

wait for lock-X on Y

48

Deadlock Handling
• System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set

• Deadlock prevention protocols ensure that the system will never

enter into a deadlock state.

– Require that each transaction locks all its data items before it begins

execution (pre-declaration).

– Impose partial ordering of all data items and require that a transaction

can lock data items only in the order specified by the partial order (graph-

based protocol).

49

More Deadlock Prevention Strategies
• Following schemes use transaction timestamps for the sake of

deadlock prevention
– wait-die scheme — non-preemptive(非抢占)

• older transactions wait for younger ones to release data items,
younger transactions never wait for older ones and roll back instead.

• one transaction may die several times before acquiring the needed
data item

– wound-wait scheme — preemptive(抢占)
• older transactions would force the rollback of younger transactions

instead of waiting for them, younger transactions may wait for older
ones.

• may be fewer rollbacks than wait-die scheme

50

Deadlock Prevention (Cont.)
• Both in wait-die and in wound-wait schemes

– a rolled back transactions is restarted with its original timestamp
– older transactions thus have precedence over newer ones, and starvation

is hence avoided
• Timeout-based schemes (基于超时的机制)

– a transaction waits for a lock for a specified amount of time. After that,
the transaction is rolled back

– thus deadlocks are not possible
– simple to implement but starvation is possible. Also difficult to determine

the good value of the timeout interval.

51

Deadlock Detection

• Deadlocks can be described as a wait-for graph(等待图) G = (V,E)

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair �� → ��

– If �� → �� is in E, then there is a directed edge from �� to ��, implying

that �� is waiting for �� to release its lock on a data item

• The system is in a deadlock state iff the wait-for graph has a cycle.

Must invoke a deadlock-detection algorithm periodically to look for

cycles.

52

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

53

Deadlock Recovery
• When deadlock is detected

– Some transaction needs to roll back

– Rollback -- determine how far to roll back the transaction

• Total rollback: abort the transaction and then restart it

• Partial rollback: more effective to roll back transaction only as far as

necessary to break the deadlock

– Starvation happens if same transaction is always chosen as victim

– Include the number of rollbacks in the cost factor to avoid starvation

54

Assignments
• Practice exercises: 18.2

• Submission: 12:59pm, June 4, 2025

55

End of Lecture 13

