
1复旦大学计算机科学技术学院

Lecture 9: Indexing & Hashing
第9讲：索引与哈希

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate &

Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 8 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no class
– Lect. 10 (May 8) - Ch15: Query processing
– Lect. 11 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions
– Lect. 13 (May 29) - Ch18: Concurrency

control
– Lect. 14 (Jun. 5) - Ch19: Recovery system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

Outline
 Basic Concepts

• Ordered Indexing

• B+-tree & B-tree Indices

• Static & Dynamic Hashing

• Ordered Indexing vs. Hashing

• Index Definition in SQL

• Multiple-key Access

4

Basic Concepts
• Query（查询）

– The expression of user’ requirements of data in the database using use
some query language such as SQL

– The major form of data access in DBs

• For example
– select loan_number

from loan
where branch_name = ‘Perryridge’ and amount > 1200

• Indexes (索引) are a kind of data structures for speeding up
query processing

5

Basic Concepts
• Indexing mechanisms

– Speed up the access to desired data
– Index files are typically much smaller than the original file

• Search Key(搜索码/关键字)
– The set of attributes used to look up records in a file/table
– An index file consists of records (called index entries, 索引项) of the

form (search-key, pointer)
• Two kinds of indices

– Ordered index (顺序索引): search keys are stored in sorted order
– Hash index (散列索引): search keys are distributed uniformly across

“buckets” using a “hash function”

search-key pointer

6

Why indexes work?
• 索引可提高检索效率，其结构（二叉树、B+树等）占用空间小，可以放在

内存中，访问速度快，由此，减少访问硬盘

– 如果表中的一条记录在磁盘上占用 1000字节，对其中10字节的一个字段建立索引，那
么该记录对应的索引项的大小只有10字节。如SQL Server的最小空间分配单元是“页
Page”，一个页在磁盘上占用8K空间，可以存储上述记录8条，但可以存储索引800条

– 从一个有8000条记录表中检索符合某个条件的记录，如没有索引，可能需要遍历8000
条×1000字节/8K字节=1000个页面才能找到结果。

– 如果在检索字段上有上述索引，则可以在8000条×10字节/8K字节=10个页面中检索到
满足条件的索引块（可以放在内存中），然后根据索引块上的指针逐一找到结果数据块
，这样I/O访问量要少很多

7

Index Evaluation Metrics
• Access types supported efficiently

– Equal-query (等值查询), Range-query (范围查询), kNN……

• Access time:访问时间

• Update (maintenance) time
– Insertion time: 插入一个新数据项时间，包括: 找到插入位置时间 + 更新索引结构时

间

– Deletion time: 删除一个数据项时间，包括: 找到待删除项时间 + 更新索引结构时间

• Space overhead: 空间开销，一个索引结构占用的额外存储空间

select loan_number
from loan
where branch_name = ‘Perryridge’

select loan_number
from loan
where amount > 1200

8

Outline
• Basic Concepts

 Ordered Indexing

• B+-tree & B-tree Indices

• Static & Dynamic Hashing

• Ordered Indexing vs. Hashing

• Index Definition in SQL

• Multiple-key Access

9

Ordered Indexing-顺序索引
• Ordered index

– Index entries are sorted on the search key value
– Primary index and secondary index
– Primary index (主索引), clustering index 聚集索引

• 包含记录的文件按某个搜索码指定的顺序排序，该搜索码对应的索引称为
clustering index

– Secondary index (辅助索引), no-clustering index (非聚集索引)
• An index whose search key specifies an order different from the

sequential order of the file
• Index-sequential file (索引顺序文件)

– Ordered sequential file with a primary index
– 索引顺序文件是顺序文件的扩展，其中各记录本身在介质上也是顺序排列的，包含了直接处理和修

改记录的能力。索引顺序文件能像顺序文件一样进行快速顺序处理，既允许按物理存放次序（记录
出现的次序），也允许按逻辑顺序（由记录主关键字决定的次序）进行处理。索引顺序文件通常用
树结构来组织索引。静态索引结构ISAM和动态索引结构VSAM

10

Primary Index：Clustering Index
• 聚集索引的叶节点就是数据节点，索引顺序就是数据物理存储顺序。一

个表最多只能有一个聚集索引

B1Vj

多级索引主索引

11

Secondary Index：Non-clustering Index
• 非聚集索引的叶节点仍然是索引节点，有一个指针指向对应的数据块。

非聚集索引顺序与数据物理排列顺序无关

Page 708

12

Dense Index
• Dense index (稠密索引)

– Index record appears for every search-key value in the file

13

Sparse Index
• Sparse Index (稀疏索引)

– Contain index records for only some search-key values when records
are sequentially ordered on search-key (why?)

14

Multilevel Index (多级索引)
• If primary index does not fit in memory, data access becomes

expensive

• To reduce the number of disk accesses to index records, treat
primary index as a sequential file and construct a sparse index on it
– outer index – a sparse index of primary index
– inner index – the primary index file

• If even outer index is too large to fit in main memory, yet another
level of index can be created, and so on

15

Multilevel Index (Cont.)

16

Dense vs. Sparse Index

• To locate a record with search-key value �:
– Dense index

• Find index record with search-key value = K
– Sparse index

• Find index record with largest search-key value <= K
• Search file sequentially starting at the record to which the index

record points
– Sparse index is generally slower than dense index for locating

records but saves more storage space
– Space and maintenance for insertions and deletions

17

Index Update: Deletion
• Single-level index deletion

– Dense indices – deletion of search-key in index is similar to file
record deletion

18

Index Update: Deletion
• Single-level index deletion

– Sparse indices
• if an entry for the search key exists in the index, it is deleted by replacing the

entry in the index with the next search-key value in the file
• if the next search-key value already has an index entry, the entry is deleted

instead of being replaced

19

Index Update: Insertion
• Single-level index insertion

– Perform a lookup using the search-key value
– Dense indices – if the search-key value does not appear in the

index, insert it
– Sparse indices – if index stores an entry for each block of the

file, no change needs to be made to the index unless a new block
is created. In this case, the first search-key value appearing in
the new block is inserted into the index

• Multilevel insertion/deletion
– Extensions of the single-level algorithms

20

Dense vs. Sparse Index

• Access time

– Dense index is more efficient in data search

• Space and maintenance for insertions and deletions

– Sparse index needs less space and less maintenance overhead for

insertions and deletions

• Good tradeoff: sparse index with an index entry for every block

in file, corresponding to the least search-key value in the block

21

Secondary Indices
• Querying by secondary indices

– Example 1: In the account relation stored sequentially by
account number, we may want to find all accounts in a particular
branch

– Example 2: to find all accounts with a specified balance or range
of balances

• Secondary index
– Build a secondary index with an index record for each search-

key value
– Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value

22

Secondary Index on Balance Field of Account

bucket

23

Primary and Secondary Indices
• Secondary indices have to be dense (why?)

• When a file is modified, every index on the file must be
updated. Updating indices imposes overhead on database
modification

• Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive
– each record access may fetch a new block from disk

24

Outline

• Basic Concepts
• Ordered Indexing
 B+-tree & B-tree Indices
• Static & Dynamic Hashing
• Ordered Indexing vs. Hashing
• Index Definition in SQL
• Multiple-key Access

25

B+-Tree Index Files
B+-tree is an alternative to indexed-sequential file
• Disadvantage of indexed-sequential file

– Performance degrades as file grows, since many overflow blocks (溢出块)
get created. Periodic reorganization of entire file is required

• B+-tree index file
– Advantage: automatically reorganizes itself with small and local

changes, in the face of insertions and deletions. Reorganization of entire
file is not required to maintain performance

– Disadvantage: extra insertion and deletion overhead, space overhead
– B+-tree is used widely since its advantages outweight the disadvantages

26

Record pointer buckets

As the database enlarges, more and more overflow buckets are used

27

Example of B+-Tree

28

B+-Tree Index Files (Cont.)
• Typical B+-tree node

– �� are the search-key values. The search-keys in a node are ordered, i.e.,
 �� < �� < �� < ⋯ < ��−�

– �� are pointers to children (for non-leaf nodes) or pointers to records
or buckets of records (for leaf nodes)

29

B+-Tree Index Files (Cont.)
• A B+-tree is a rooted tree (有根树) satisfying the following properties:

– B+-tree is a balanced tree and all the paths from root to leaf nodes are of
the same length

– Internal node
• Each node has between �/� and � children (pointers)

– Leaf node
• Each node has between (� − �)/� and � − � values

– Root node
• If the root is not a leaf, it has at least 2 children
• If the root is a leaf (i.e., there are no other nodes in the tree), it can have

between 0 and n–1 values

30

Example of a B+-tree

• Leaf nodes must have between 1 and 2 values ((� − �)/� and � − �)

• Non-leaf nodes other than root must have between 2 and 3 children (�/� and �)
• Root must have at least 2 children

B+-tree for account file (n = 3)

31

Leaf Node in B+-Tree
• Properties of a leaf node

– Pointer �� either points to a file record with search-key value ��, or to
a bucket of pointers to file records, each record having search-key
value ��. Only need bucket structure if the search-key does not form a
primary key (why?)

– �� points to next leaf node in search-key order

�=4
instructor

file

32

Non-Leaf Nodes in B+-Tree
• Non leaf nodes form a multi-level sparse index on the leaf nodes.

For a non-leaf node with � pointers:
– All the search-keys in the subtree to which �� points are less than ��

– For � ≤ � ≤ � − �, all the search-keys in the subtree to which �� points
have values greater than or equal to ��−� and less than ��

– All the search-keys in the subtree to which �� points are greater than
or equal to ��−�

Subtree with values < K1 Subtree with values:  Kn-2 & < Kn-1 Subtree with values:  Kn-1

33

Example of B+-tree

• B+-tree for instructor file (� = 6)

– Leaf nodes must have between 3 and 5 values ((� − �)/� and � − �)

– Non-leaf nodes other than root must have between 3 and 6 children (�/� and
�)

– Root must have at least 2 children

�=?

34

Observations about B+-tree
• Since the inter-node connections are achieved by pointers, “logically”

close blocks need not be “physically” close
• The non-leaf levels of the B+-tree form a hierarchy of sparse indices
• The B+-tree contains a relatively small number of levels, and search

can be conducted efficiently
– If there are � search-key values in the file, the tree height is no

more than 풍���/�(�)
• Level below root has at least � ∗ �/� pointers (root has at least 2 pointers)
• Next level has at least � ∗ �/� ∗ �/� pointers
• …

• Insertions and deletions to the index file can be handled efficiently

35

Queries on B+-Trees
• Find all records with a search-key value of �

– Start with the root node
• Check the node for the smallest search-key value > k
• If such a value exists, assume that it is ��. Then follow �� to the child node

• Otherwise � ≥ ��−�, where there are � pointers in the node. Then follow �� to
the child node

– If the node reached by following the pointer above is not a leaf node, repeat the
above procedure on the node, and follow the corresponding pointer

– Eventually reach a leaf node. If for some �, key �� = �, follow pointer �� to the
desired record or bucket. Else no record with search-key value � exists

36

Example: Queries on B+-Tree
• Search begins at root, and key comparisons direct it to a leaf

– Search for Perryridge

37

Example: Queries on B+-Tree
• Search begins at root, and key comparisons direct it to a leaf

– Search for 5*, 15*, all data entries >= 24*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 n = 5

38

Queries on B+-Trees (Cont.)
• In processing a query, a path is traversed in the tree from the root

to some leaf node
• If there are � search-key values in the file, the path is no longer

than 풍���/�(�)
– E.g., a node is generally the same size as a disk block, typically 4 KB,

and � is typically around 100 (40 bytes per index entry)
• With 1 million search key values and � = 100, at most

log50(1,000,000) = 4 nodes are accessed in a lookup.
• For a balanced binary tree with 1 million search key values — around 20

nodes (i.e., log2(1,000,000)) are accessed in a lookup
• The above difference is significant since every node access may need a disk

I/O, costing around 10 ms

39

Insertion in B+-Tree
• Find the leaf node in which the search-key value would appear

– If the search-key value is already in the leaf node
• record is added to file
• if necessary, a pointer is inserted into the bucket

– If the search-key value is not in certain node, add the record to the
main file and create a bucket if necessary. Then:

• If there is room in the leaf node, insert (key-value, pointer) pair in the
leaf node

• Otherwise, split the node along with the new (key-value, pointer) entry

40

Insertion in B+-Tree (Cont.)

B+-Tree before and after the insertion of “Clearview”

n = 3

41

Insertion in B+-Tree (Cont.)
• Splitting a leaf node

– take the � (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first �/2 in the original node, and
the rest in a new node

– let the new node be �, and let � be the least key value in p. Insert (�, �) in
the parent of the node being split

– If the parent is full, split it and propagate the split further up
• Splitting of nodes proceeds upwards till a node that is not full is found

– In the worst case, the root node may be split, thus increasing the height
of the tree by 1

42

Insertion in B+-Tree (Cont.)
• Splitting a non-leaf node: when inserting (�, �) into an full internal

node �
– Copy � to an in-memory area � with space for � + � pointers and � keys
– Insert (�, �) into �

– Copy ��, ��, …, � �/� −�, � �/� from � back into node �

– Copy � �/� +�, � �/� +�,…,��, ��+� from � into the newly allocated node
�′

– Insert (� �/� , �′) into parent of �

43

Deletion in B+-Tree
• Find the record to be deleted, and remove it from the main file and

the corresponding pointer from the bucket
• Remove (search-key value, pointer) from the leaf node if there is no

bucket or if the bucket has become empty
• If the node has too few entries due to the removal, and the entries

in the node and a sibling fit into a single node, then merge siblings
– Insert all the search-key values in the two nodes into a single node (the

one on the left), and delete the other node
– Delete the pair (��−�, ��), where �� is the pointer to the deleted node,

from its parent, recursively using the above procedure

44

Examples of B+-Tree Deletion

• Deleting “Downtown” causes merging of under-full leaves
• The removal of the leaf node containing “Downtown” did not result in its parent having too

little pointers. So the cascaded deletions stopped with the deleted leaf node’s parent

Before and
after deleting
“Downtown”

� = 3

45

Deletion in B+-Tree (Cont.)
• If the node has too few entries due to the removal, and the entries

in the node and a sibling don’t fit into a single node, then
redistribute pointers
– Redistribute the pointers between the node and a sibling such that both

have more than the minimum number of entries
– Update the corresponding search-key value in the parent of the node

• The node deletions may cascade upwards till a node which has �/2
or more pointers is found.

• If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root

46

Examples of B+-Tree Deletion (Cont.)

• Node with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling

• As a result “Perryridge” node’s parent became underfull, and was merged with its sibling
(and an entry was deleted from their parent)

• Root node then had only one child, and was deleted and its child became the new root node

Deletion of “Perryridge”

n = 3

47

Example of B+-tree Deletion (Cont.)

• Parent of leaf containing Perryridge became underfull, and borrowed a pointer from
its left sibling

• Search-key value in the parent’s parent changes as a result

Deletion of “Perryridge”

48

B+-Tree File Organization
• Index file degradation (性能下降) problem is solved by using B+-Tree

indices. Data file degradation problem is solved by using B+-Tree File
Organization (B+树文件组织）

• The leaf nodes in a B+-tree file organization store records, instead of
pointers

• Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a non-leaf node

• Leaf nodes are still required to be at least half full
• Insertion and deletion are handled in the same way as the insertion

and deletion of entries in a B+-tree index

49

B+-Tree File Organization (Cont.)

• Good space utilization is important since records use more space than pointers.
• To improve space utilization, involve more sibling nodes in redistribution

– Involving 2 siblings or more in redistribution to avoid split / merge where
possible

50

B-Tree Index Files
• Similar to B+-tree, but B-tree allows search-key values to appear only

once, thus eliminating redundant storage of search keys
• Search keys in non-leaf nodes appear nowhere else in the B-tree; an

additional pointer field for each search key in a non-leaf node is
included

• Generalized B-tree leaf node

• Nonleaf node – pointer �� of �� is the bucket or file record pointers

Leaf node

Non-leaf node

51

B-Tree Index File

B-tree (above) and B+-tree (below) on same data

52

B-Tree Index Files (Cont.)
• Advantages of B-Tree indices

– Use less tree nodes than B+-Tree
– Sometimes possible to find search-key value before reaching leaf node.

• Disadvantages of B-Tree indices
– Only a small fraction of all search-key values are found early
– Non-leaf nodes are larger (due to additional pointers), so fan-out is

reduced. Thus B-Trees typically have greater depth than B+-Tree
– Insertion and deletion are more complicated than in B+-Trees
– Implementation is harder than B+-Trees

• Typically, the advantages of B-Trees do not outweigh disadvantages

53

Outline

• Basic Concepts
• Ordered Indexing
• B+-tree & B-tree Indices
 Static & Dynamic Hashing
• Ordered Indexing vs. Hashing
• Index Definition in SQL
• Multiple-key Access

54

Static Hashing
• A bucket is a unit of storage containing one or more records (a bucket

is typically a disk block)
• In a hash file organization, we obtain the bucket of a record directly

from its search-key value using a hash function
• Hash function � is a function from the set of all search-key values �

to the set of all bucket addresses B
• Hash function is used to locate records for access, insertion as well as

deletion
• Records with different search-key values may be mapped to the same

bucket; thus the entire bucket has to be searched sequentially to
locate a record

55

Example of Hash File Organization (Cont.)

• Hash file organization of account file, using branch-name as key
(See figure in next slide)
– There are 10 buckets

• The binary representation of the i-th character is assumed to be
the integer i

• The hash function returns the sum of the binary representations
of the characters modulo 10

• E.g.
h(Perryridge) = 125 mod 10 = 5
h(Round Hill) = 113 mod 10 = 3
h(Brighton) = 93 mod 10 = 3

a b c d e
f g h I j
k l m n o
p q r s t
u v w x y
zh(Brighton) = 2+18+9+7+8+20+15+14=93

56

Example of Hash File Organization
Hash file organization of account
file, using branch-name as key.

The binary representation of the i-th
character is assumed to be the
integer i

h(Perryridge) = 125 mod 10 = 5
h(Round Hill) = 113 mod 10 = 3
h(Brighton) = 93 mod 10 = 3

57

Hash Functions

• Worst hash function maps all search-key values to the same bucket

• An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values

• Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual

distribution of search-key values in the file

• Typical hash functions perform computation on the internal binary

representation of the search-key

58

Handling of Bucket Overflows

• Bucket overflow can occur because of

– Insufficient buckets

– Skew in distribution of records. This can occur due to two reasons:

• multiple records have same search-key value

• chosen hash function produces non-uniform distribution of key values

• Although the probability of bucket overflow can be reduced, it

cannot be eliminated; it is handled by using overflow buckets

59

Handling of Bucket Overflows (Cont.)
• Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list

60

Hash Indices
• Hashing can be used not only for file organization, but also for index-

structure creation

• A hash index organizes the search keys, with their associated
record pointers, into a hash file structure

• Strictly speaking, hash indices are always secondary indices (why?)
– if the file itself is organized using hashing, a separate primary hash index

on it using the same search-key is unnecessary
– However, we use the term hash index to refer to both secondary index

structures and hash organized files

61

Example of Hash Index

A secondary hash index on the
account file, for the search
key account_number.

The hash function computes
the sum of the digits of the
account number modulo 7.

The hash index has 7 buckets,
each of size 2. One has a
overflow bucket.

62

Deficiencies of Static Hashing
• In static hashing, function � maps search-key values to a fixed set

of B bucket addresses
– Databases grow with time. If the initial number of buckets is too small,

performance will degrade due to too much overflows
– If file size at some point in the future is anticipated and choose the

number of buckets allocated accordingly, significant amount of space will
be wasted initially

– If database shrinks, again space will be wasted
– One option is periodic re-organization of the file with a new hash

function, but it is very expensive.
• These problems can be avoided by using techniques that allow the

number of buckets to be modified dynamically

63

Dynamic Hashing
• Good for database that grows and shrinks in size

– Allows the hash function to be modified dynamically
– Extendable hashing(可扩充散列) – one form of dynamic hashing
– Hash function generates values over a large range - typically b-bit integers, with b =

32 (then 232 hash values).
– At any time use only a prefix of the hash values to index into a table of bucket

addresses.
– Let the length of the prefix be � bits, � ≤ � ≤ ��

– Bucket address table size = ��. Initially � = �

– Value of � grows and shrinks as the size of the database grows and shrinks.
– Multiple entries in the bucket address table may point to a bucket
– Thus, actual number of buckets is < ��

• The number of buckets also changes dynamically due to coalescing (合并) and
splitting of buckets.

64

General Extendable Hash Structure

65

Use of Extendable Hash Structure
• Each bucket � stores a value ��; all the entries that point to the same

bucket have the same values on the first �� bits.

• To locate the bucket containing search-key ��:
– 1. Compute �(��) = �

– 2. Use the first � high order bits of X as a displacement into bucket
address table, and follow the pointer to appropriate bucket

• To insert a record with search-key value ��
– follow same procedure as look-up and locate the bucket, say �
– If there is room in the bucket � insert record in the bucket.
– Else the bucket must be split and insertion re-attempted (next slide.)

• Overflow buckets used instead in some cases (will see shortly)

66

Updates in Extendable Hash Structure
• To split a bucket j when inserting record with search-key value ��:

– If � > �� (more than one pointer to bucket �)

• allocate a new bucket �, and set �� and �� to the old �� + �

• make the second half of the bucket address table entries pointing to � to point
to �

• remove and reinsert each record in bucket �

• recompute new bucket for �� and insert record in the bucket (further splitting
is required if the bucket is still full)

– If � = �� (only one pointer to bucket �)
• increment � and double the size of the bucket address table.
• replace each entry in the table by two entries that point to the same bucket.
• recompute new bucket address table entry for ��

Now � > �� so use the first case above.

67

Updates in Extendable Hash Structure (Cont.)
• When inserting a value, if the bucket is full after several splits (that

is, � reaches some limit b) create an overflow bucket instead of
splitting bucket entry table further.

• To delete a key value,
– locate it in its bucket and remove it.
– The bucket itself can be removed if it becomes empty (with appropriate

updates to the bucket address table).
– Coalescing of buckets can be done (can coalesce only with a “buddy” bucket

if it is present)
– Decreasing bucket address table size is also possible
– Note: decreasing bucket address table size is an expensive operation and

should be done only if number of buckets becomes much smaller than the
size of the table

68

Use of Extendable Hash Structure: Example

Initial Hash structure, bucket size = 2

69

Example (Cont.)
• Hash structure after insertion of one Brighton and two Downtown

records

70

Example (Cont.)
• Hash structure after insertion of Mianus record

71

Example (Cont.)

Hash structure after insertion of three Perryridge records

72

Example (Cont.)
• Hash structure after insertion of Redwood and Round Hill records

73

Extendable Hashing vs. Other Schemes

• Benefits of extendable hashing:
– Hash performance does not degrade with growth of file
– Minimal space overhead

• Disadvantages of extendable hashing
– Extra level of indirection to find desired record (an additional table)
– Bucket address table may itself become very big (larger than memory)

• Need a tree structure to locate desired record in the structure !
– Changing size of bucket address table is an expensive operation

• Linear hashing is an alternative mechanism which avoids these
disadvantages at the possible cost of more bucket overflows

74

Outline

• Basic Concepts
• Ordered Indexing
• B+-tree & B-tree Indices
• Static & Dynamic Hashing
 Ordered Indexing vs. Hashing
• Index Definition in SQL
• Multiple-key Access

75

What to Consider for Index Selection?
• Cost of periodic re-organization
• Frequency of insertions and deletions
• Whether optimizing average access time at the expense of

worst-case access time

• Expected type of queries
– Hashing is generally better at retrieving records having a

specified value of the key
– If range queries are common, ordered indices are preferred

76

Outline

• Basic Concepts
• Ordered Indexing
• B+-tree & B-tree Indices
• Static & Dynamic Hashing
• Ordered Indexing vs. Hashing
 Index Definition in SQL
• Multiple-key Access

77

Index Definition in SQL
• Create an index

create [UNIQUE] index <index-name> on <relation-name> (<attribute-list>)
E.g., create index b_index on branch(branch_name)

– Use create unique index to indirectly specify and enforce the condition
that the search key is a candidate key

• Not really required if SQL unique integrity constraint is supported

• Drop an index
drop index <index-name>

78

Outline

• Basic Concepts
• Ordered Indexing
• B+-tree & B-tree Indices
• Static & Dynamic Hashing
• Ordered Indexing vs. Hashing
• Index Definition in SQL
 Multiple-key Access

79

Multiple-Key Access
• Use multiple indices for certain types of queries

– E.g.,
select account_number
from account
where branch_name = “Perryridge” and balance = 1000

• Three possible strategies for processing query using indices on single attributes
– Use index on branch_name to find accounts with branch_name = “Perryridge”, test

balances of $1000; .
– Use index on balance to find accounts with balances of $1000; test branch_name =

“Perryridge”.
– Use branch_name index to find pointers to all records pertaining to the Perryridge

branch. Similarly use index on balance. Take intersection of both sets of pointers
obtained

80

Indices on Multiple Attributes
• Suppose we have an index on combined search-key (branch_name,

balance)
• With the where clause

where branch_name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only records that
satisfy both conditions

• Can also efficiently handle
where branch_name = “Perryridge” and balance < 1000

• But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the second
condition, may lead to many I/Os

81

Grid Files
• Structure used to speed up the processing of general multiple

search-key queries involving one or more comparison operators
• The grid file has a single grid array and one linear scale for each

search-key attribute. The grid array has the number of dimensions
equal to number of search-key attributes

• Multiple cells of grid array can point to same bucket
• To find the bucket for a search-key value, locate the row and

column of its cell using the linear scales and follow pointer

82

Example Grid File for account

83

Queries on a Grid File
• A grid file on two attributes A and B can handle queries of all following

forms with high efficiency
– (�� ≤ � ≤ ��)
– (�� ≤ � ≤ ��)
– (�� ≤ � ≤ �� ∧ �� ≤ � ≤ ��)

• E.g.,
– to answer (�� ≤ � ≤ �� ∧ �� ≤ � ≤ ��), use linear scales to find the

corresponding candidate grid array cells, and look up all the buckets
pointed to from those cells

84

Grid Files (Cont.)
• During insertion, if a bucket becomes full, new bucket can be

created if more than one cell points to it
– Idea similar to extendable hashing, but on multiple dimensions
– If only one cell points to it, either an overflow bucket must be created

or the grid size must be increased
• Linear scales must be chosen to uniformly distribute records

across cells.
– Otherwise there will be too many overflow buckets.

• Periodic re-organization to increase grid size will help
– But reorganization can be very expensive.

• Space overhead of grid array can be high.

85

Bitmap Indices
• Bitmap indices are a special type of index designed for efficient querying on

multiple keys
• Records in a relation are assumed to be numbered sequentially from:

– Given a number �, it must be easy to retrieve record �
• Particularly easy if records are of fixed size

• Applicable on attributes that take on a relatively small number of distinct
values
– E.g., gender, country, state, …
– E.g., income-level (income broken up into a small number of levels such as

0-9999, 10000-19999, 20000-50000, 50000- infinity)
• A bitmap is simply an array of bits

86

Bitmap Indices (Cont.)
• In its simplest form, a bitmap index on an attribute has a bitmap

for each value of the attribute
– Bitmap has as many bits as records
– In a bitmap for value �, the bit for a record is 1 if the record has the

value � for the attribute, and is 0 otherwise

87

Bitmap Indices (Cont.)
• Bitmap indices are useful for queries on multiple attributes

– not particularly useful for single attribute queries
• Queries are answered using bitmap operations

– Intersection (and)
– Union (or)
– Complementation (not)

• Each operation takes two bitmaps of the same size and applies the operation on
corresponding bits to get the result bitmap
– E.g., 100110 AND 110011 = 100010
 100110 OR 110011 = 110111
 NOT 100110 = 011001
– Males with income level L1: 10010 AND 10100 = 10000

• Can then retrieve required tuples
• Counting number of matching tuples is even faster

88

Bitmap Indices (Cont.)
• Bitmap indices generally very small compared with relation size

– E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space used by
relation.

• If number of distinct attribute values is 8, bitmap is only 1% of relation size
• Deletion needs to be handled properly

– Existence bitmap to note if there is a valid record at a record location
– Needed for complementation

• not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
• Should keep bitmaps for all values, even null value

– To correctly handle SQL null semantics for NOT(A=v):
• intersect above result with (NOT bitmap-A-Null)

89

Assignments-Quiz

• Q1: Construct a B+-tree from an empty tree. Each node can hold

four pointers

– The sequential values to be inserted are: 10, 7, 12, 5, 9, 15, 30, 23, 17,

26

– Then delete 9, 10, 15, respectively

– Please give the B+ trees after each insertion and each deletion

• Q2: Compare B+-tree and B-tree and describe their difference

90

补充学习（索引相关）

• 商用数据库
– Oracle索引结构：B树索引，位图索引

• 《Oracle索引技术》,人民邮电出版社

– IBM DB2索引结构：B+树
– Microsoft SQL Server索引结构：B树

• 开源数据库
– MySQL索引：B-Tree(B+Tree)、Hash索引

– Postgre SQL, MySQL, Ingres r3, MaxDB, Firebird (InterBase), MongoDB,
SQLite, CUBRID, Cayley(Graph)

• NoSQL数据库
– HBase, Cassandra, MongoDB, Redis
– OceanBase, openGauss, 人大金仓, X-DB, 达梦 ……

91

Research framework

Spatio-
textual data

Spatio-
textual data

Spatio-
textual data

Spatio-
textual data

Data processing
Objects extraction

Geo-coding

Data cleaning

Indexing Spatial indexing Textual indexing Hybrid indexing

Retrieval Standard queries Advanced
queries

Applications
Smart city Navigation

Geo-tagging of reality Location-based advertisement

Data fusion

LBS

92

Spatio-textual objects

• �=(�,�)
– �.�: spatial location, �.�: text description

POI: shop, bank, restaurant, museum, school,
hospital, etc.

Geo-tagged web contents: news, images, videos,
comments, micro-blogs

93

Spatio-textual indices

Spatial indices Textual indices

Grid

R-tree

SFC
Space filling curve

…

Inverted file

Signature
file

Bitmap

…

94

Spatial index: Grid index

Partition Tree structure

95

Spatial index: R-tree

o8 o9o
5

o
6

o
7

o
3

o
4

o
1

o
2

R3

R1

R4

R2

o5

o9

o6

o7

o3
o4

o8

o1

o2

o9o
5

o
7

o
3

o
4

o
1

o
2

R1 R2 R3 R4

o8 o
6

96

Spatial index: R-tree

R3

R1

R4

R2

o5

o9

o6

o7

o3
o4

o8

o1

o2

o9o
5

o
7

o
3

o
4

o
1

o
2

R1 R2 R3 R4

o8 o
6

R6

R5

R2 R4R1 R3

R5 R6R5 R6

97

Spatial index: space filling curve (SFC)

Z-curve Hilbert curve

98

Textual index: inverted index

Inverted Index

A

B

C

F

E
cinema,
movie

cinema,
movie

shop,
shoes

H

middle, school G

shop, shoes

restaurant, dumplings

D

restaurant,
sushi

Spatio-textual objects

Keywords Spatial-textual objects
shop A, E, G
shoes A, E
cinema B, H
movie B, H
restaurant C, F
… …

shop, bags

99

Textual index: bitmap

�� �� �� �� ��
�1�2�3 1 1 1 0 0
�2�4�5 0 1 0 1 1
�2�4 0 1 0 1 0

�1�2�4�5 1 1 0 1 1
�4�5 0 0 0 1 1

…

100

Textual index: signature file

Terms/documents Signature

�1 sig(�1)=0000000001

�2 sig(�2)=0000000010

�3 sig(�3)=1000000011

�1�2 sig(�1�2)=sig(�1) ∨ sig(�2)=0000000011

�2�3 sig(�2�3)=sig(�2) ∨ sig(�3)=1000000011

…

101

ST index& TS index

• Grid index + Inverted file
– ST: spatial textual index (grid index first)
– TS: textual spatial index (inverted file first)

102

R*-tree-IF and IF-R*-tree
• R*-tree + Inverted file

– R*-tree: a variant of R-tree

R*-Tree-IF IF-R*-Tree

103

KR*-tree (Keyword R*-tree)
• R*-tree + Inverted file

– Each node is virtually augmented with the set of keywords that appear
in its subtree.

– Nodes are organized into inverted file

Keyword Tree nodes

Italian R1, R2, R3, R4, R5, R6

coffee R1, R2, R4, R5, R6

restaurant R1, R2, R3, R4, R5, R6

Pizza R2, R4, R5, R6

Expensive R1, R2, R5

104

SFC-Quad
• Inverted file + Filling curve

– Inverted file + Hilbert curve: inverted lists are laid out along a Hilbert
curve on disk.

– Inverted file + Z-curve: the objects in each inverted list are assigned
and ordered based on their spatial positions on the Z-curve.

Z-curve Hilbert curve

105

IR2-tree

• Signature + R-tree

106

SKI (Spatial-Keyword Indexing)

• Bitmap + R-tree

107

WIR-tree

• R-tree + inverted bitmaps
– Variant of IR-tree

• Idea
– Consider the word frequency
– Recursively partition objects by keyword frequency

108

IR-tree
• Augment each node of R-tree with a summary of the text

content of the objects in the sub-tree

o9o
5

o
7

o
6

R4R3

R5 R6

o5
4
0
4
0

o6
0
4
3
0

o7
1
1
4
1

o9
3
0
3
0

a
b
c
d

Object descriptions
a: (R3, 4), (R4, 1)
b: (R4, 4)
c: (R3, 4), (R4, 4)
d: (R4, 1)

Inverted file

a: (o7, 1)
b: (o6, 4), (o7, 1)
c: (o6, 3), (o7, 4)
d: (o7, 1)

Inverted file

a: (o5, 4), (o9, 3)
c: (o5, 4), (o9, 3)

Inverted file

109

S2I (spatial inverted index)
• Skewed distribution of keywords

• S2I: R-tree + inverted file
– Build inverted index first
– Build term frequency-aware spatial index

• Frequent keywords: aggregated R-trees (aR-trees)
• Less frequent keywords: blocks

Fr
eq
ue
nc
y

Keywords

110

SKQs in Euclidean space
• Standard SKQs

– Boolean range query
(BRQ)

• ST, TS
• R*-Tree-IF, IF-R*-tree
• KR*-Tree
• SKIF

– Boolean kNN query
(BkQ)

• IR2-tree
• SKI
• WIR-tree

– Top-k query (TkQ)
• IR-tree
• S2I

• Advanced SKQs
– m-CK query
– Reverse query
– Moving query
– Group query
– Direction-aware

query
– Region of interest

query
– Why-not query
– Similarity join query
– …

111

Indices for SKQ in Euclidean space

Index Spatial index Textual Index Combination BkQ TkQ BRQ

ST Grid IF Spatial-first √
TS Grid IF Text-first √
IF-R*-Tree R*-Tree IF Text-first ∆ √
R*-Tree-IF R*-Tree IF Spatial-first ∆ √
SF2I SFC IF Spatial-first √
KR*-Tree R*-Tree IF Tightly combined ∆ √
IR2-Tree R-Tree Bitmap Tightly combined √ ∆
IR-Tree R-Tree IF Tightly combined ∆ √ ∆
SKIF Grid IF Tightly combined √
SKI R-Tree Bitmap Spatial-first √
S2I R-Tree IF Text-first ∆ √ ∆
WIR-Tree R-Tree Inv. Bitmap Tightly combined √ ∆
SFC-QUAD SFC IF Tightly combined √

112

Summary
• Basic Concepts

• Ordered Indexing

• B+-tree & B-tree Indices

• Static & Dynamic Hashing

• Ordered Indexing vs. Hashing

• Index Definition in SQL

• Multiple-key Access

113

Assignments
• Practice exercises: 14.3, 14.4

• Exercises: 14.20

• Submission DDL: 12:00pm, May 7

114

End of Lecture 8

