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What is probability?

Frequentist interpretation

0 Probability represents long run frequencies of events
o It interprets probability as the frequency of occurrence of an outcome

Bayesian interpretation

0 Probability is used to quantify the uncertainty about something

0 It interprets probability as our believe of the likelihood of a certain
outcome, i.e, probability measures a degree of belief
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Probability of an event

Let A be an event

0 P(A): the probability that the event A is true
0<P(A)<1
P(A) = 0 means the event definitely will not happen
P(A) =1 means the event definitely will happen

o P(A): the probability that the event not A
P(A) = 1— P(A)
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‘ Probability of a random variable

= Discrete random variable X

0 take on any value from a finite or countably infinite set X

= Example: event vs. random variable
0 Event A={l] X% M}
2 Random variable X={0,1}
s 1 RRHRESTW
= 0 RAAHRAZ W
1 P(X=1) =P(A)
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‘ Probability of a random variable

= Example: event vs. random variable
0 Event A={IR% T W}
0 Random variable X={1,2,3,4}
s 1 RRHRESTW
= 2R RFPRTE
= 3 RRWIR FTUKE
I TN PN PN
0 P(X=1) = P(A)
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‘ Probability of a random variable

= Probability mass function P(X=x) (or P(x))
0 the probability of the event that X =x

a0 0<P(x)<1
. erxp(x) =1 0.51
0.31
0.2 I
o o
1 3 /
X =1{1,3,7}
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‘ Probability of a random variable

= Special case

(a) 3215340 (b) 1B A0
X = {1,2,3,4) X = {1}
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‘Basic rules of probability

= Probability of a union of two events

o Given two events A and B

P(AUB) =P(A)+ P(B) —P(ANB)
= P(A) + P(B) if A and B are mutually exclusive
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‘Basic rules of probability

= Joint probability

o Given two events A and B

P(A,B) = P(AN B) = P(A)P(B|A)
— P(B)P(A|B)

0 Marginal distribution (rule of total probability)

P(A) = ZP(A,B) - z P(A|B = b)P(B = b)
b b
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‘Basic rules of probability

= Joint probability

2 chain rule

P(X1;X2) XD)
— P(Xl)P(X2|X1)P(X3|X11X2) ---P(XD|X1'X2' "')XD—l)

= Conditional probability

P(4,B)

P(AIB) =~

if P(B) >0
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‘ Bayes rule/theorem

* P(ANB) =P(A|B)P(B)

.
Cou
.
.

P(ANB) =P(B|A)P(A)

0]}

Posterior

P(A|B)E
P(B|A) "
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Example: medical diagonsis

Question: If the nucleic acid test (NAT) is positive, what is
the probability you have COVID-19?

X =11is the event NAT is positive

Y =1 is the event you have COVID-19
Sensitivity score: P(X=11Y=1)=0.8
P(Y =1)=0.004

P(X=11Y=0)=0.1

Ply=1)Px =1y =1)
Ply=1)P(x=1y=1)+ Py =0)P(z = 1ly = 0)
B 0.004 x 0.8
~0.004 x 0.8+ (1 —0.004) x 0.1

Ply=1lz=1) =

= 0.031
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‘ Independence and conditional

independence
= Unconditionally independent (marginally independent)

P(X,Y) P(Y)

We say X and Y are unconditionally
independent or marginally
independent, 1f we can represent
the joint as the product of the two
marginals

P(X)

X 1Y < P(X,Y) = P(X)P(Y)
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‘ Independence and conditional

independence
= Conditionally independent (CI)

We say X and Y are conditionally independent
(CI) given Z iff the conditional joint can be
written as a product of conditional marginals:

P(X LY|Z) @ P(X,Y|Z) = P(X|Z)P(Y|Z)
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‘ Probability in continuous case

= Continuous random variable X

0 Cumulative distribution function (cdf)

F(x)=P(X <x)

0 Probability density function (pdf)

d
p(x) =~ F(x)

0 Probability in some interval [a, b]

b
Pla<X<b)=F(b)—-F(a) =j p(x) dx
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‘ Probability in continuous case

= Example

cdf
1 T T — 0.4
09T 0.35
08
03}
07F
0.25
06
05 F R 0.2 r
04 r 0.15 -
03F
01t
02t
0.05 |
0.1F
0 —— 1// 0
3 2 1 0 1 2 3 . & L g ! 2 .
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‘ Probability in continuous case

= Example

The pdf p(x)

0<x<05
otherwise

| plx) = {?)

-1 -0.5 0 0.5 1
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‘ Mean and Variance

= Mean (expected value) u

0 Discrete case

E[X] 2 erxxP (x)

0 Continuous case

E[X] éj xxp(x) dx
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‘ Mean and Variance

= Variance o2

var[X] £ E[(X — p)?] = E[X?] — p*

= Standard deviation

std[X] £ /var[X]
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‘ Mean and Variance
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The variance estimation

Population variance

Q 62——2 —1(x; — M)Z__Zl 1xl e

_ N
Q .U_N i=1Xi

Sample variance

o Taking n samples from the population, estimate the variance

2 _1con 2 1on
Oy =1, i=1(}’i—lly) ;.Uy—g i=1Yi

o Sampling multiple times, computing the expected valued of o,,°
n-1 n
E(Gyz) = TGZ, S0 6% = nTlE(Gyz)
0 We take the variance of one time sampling as E(c,?), the sample variance s? is
s 1

ST = 1 1(YL .uy)z

n—
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‘ Mean, median and mode: measure of central

tendency
= Mode: the most frequent number occurring in the data set

/\

1
Mode = Mean = Median
(b) Symmetric

T T

Mean ‘T 1 T*/‘/\ode /"\odeJ T~/‘/\ean
Median Median
(@) Skewed to the Left (c) Skewed to the Right
(Negatively) (Positively)
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‘ Covariance and correlation

» Covariance

o Given two random variables X and Y

0 Measure the degree to which X and Y are (linearly) related

cov[X,Y] 2 E[X-E[X])(Y —E[Y])] =E[XY]-E[X]E[Y]

= Correlation coefficient

corr [ X, Y] £

cov [ X, Y]

/var [X] var [Y]
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‘ Covariance and correlation

The correlation reflects the noisiness and direction of a linear relationship
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‘ Independence vs. correlation

= If two random variables are independent, they are
uncorrelated

= If two random variables are uncorrelated, they may be
dependent

= If two variables of gaussian distribution are uncorrelated,
they are independent
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Joint distribution probability

For Xl,Xz, 'Xd
0 More than 1 variable
0 Model stochastic relationships between the variables

Denote a d-dimensional random vector x = (X1, X5, ..., X3)

0 Number of parameters 0(K%)
K: the number of states for each variable
d: the number of variables
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‘ Covariance and correlation

= Covariance matrix

0 For a d-dimensional random vector x = (X, X5, ..., Xg)

covlx] 2 E|(x-E[x)(x—Ep)
( var [X] cov [Xq1,Xs] -+ cov [X1,Xd]\
| eov (X9, X1] var [ Xo] - cov [Xo, X4
\cov [X.d,Xl] cov [Xd; Xo] - var iXd] )
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‘ Covariance and correlation

= Correlation matrix

o For a d-dimensional random vector x = (X{, X5, ..., X4)

(001‘1‘[X1,X1] corr [ X1, Xo] --- corr[Xl,Xd])
R _ . . , .

corr [ X4, X1] corr [Xg, Xo] -+ corr [X4, X4

o All diagonal elements are 1, and the others fall in [-1, 1]
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‘ Covariance and correlation

2D Gaussian: effect of covariance / correlation

Independent (p=0) . Positively correlated (p=0.8)
3t 3
2 2
1t 1
0 0
-1 -1
-2 =2
-3 -3
473 2 1 o 1 2 3 4 A3 22 1 o 1 2 3 4
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Some common distributions

Empirical distribution
Binominal/Bernoulli distribution
Multinominal/Bernoulli distribution
Uniform distribution

Gaussian distribution

The multivariate Gaussian distribution
Poisson distribution

Beta distribution

Dirichlet distribution
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‘ Empirical distribution

= Also called empirical measure

o Given a set of data D = {xq, x5, ..., x5}, the empirical distribution
(empirical measure) is defined as

where 6,(A) is the Dirac measure, defined by

w0 ifxgA
5T(A)_{1 itz e A

and A is a given value
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‘ Empirical distribution

= Empirical CDF (eCDF)

0 Generalized definition: weight

N
Femp(t) — Pemp((—oo’t]) - %Z 1{(8,- < t}

i=1
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Empirical distribution

= The empirical distribution converges to the true distribution
with probability 1

Empirical CDF

ral
09} / -
08 7
071 ,Jj
7
06} o
=05 . J’j
1/
04 ,J_, /
03F 4
-,
0.2} N4 Empirical CDF
_r——r’J Theoretical CDF
— |
12 -10 -8 -6 4 2 0 2 4 6
X
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‘ The binomial and Bernoulli distributions

= Binomial distribution: toss a coin n times, the probability of
having k heads

Bin(k|n,0) £ (Z) oF(1 — o)+

where mean=n6, var=n6(I- 6)

n\ a n!
k] (n—k)k!

= Bernoulli: a special case of binominal distribution where tossing a
coin only once

{4 itr=1
Bel‘(Il()) — { 1—60 ifxz=0
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‘ The multinomial and multinoulli

distributions

= Multinomial distribution

0 tossing a die of K-side n times, x=(x1, x2, ..., xk) is a vector indicating
the appearing time of each side

Mu(x|n, 8) £ ( ’1---1K> H(?

where 6; is the probability that side j shows up, and

n A n!
T1...TK ryleg! - xg!

= Multinoulli: a special case of multinomial distribution with
n=1

K
Mu(x|1,8) = [[ 4=~
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‘ Summary of the multinomial and related
distributions

Name n K =x

Multinomial - - x €40, 1,..., n.}K, Zk{(:l T =N
Multinoulli 1 -  x € {0,1}%, Ek{il rp, = 1 (1-of-K encoding)
Binomial -1 xzed{0,1,...,n}

Bernoulli 1 1 xe{0,1}
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‘ Uniform distribution

= Uniformly distributed in the interval [a,b]

1
Unif (z|a,b) = [(a <x<D)
b—a
1 . .
b-a
0 a b X
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‘ Uniform distribution

= Uniformly distributed in a region R

Unif(x|R) =

R]

[[x € R]

2025/9/17
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‘ Gaussian distribution

= Also called normal distribution

0 Univariate continuous probability distribution

0 Probability density function l
V2no
. o2) 2 1 — 5ty (z—p)?
N(lll g ) _ W €
a0 Cumulative distribution function -

; %
O(x;p,0°) é/ N (z|p, 0%)dz
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Gaussian distribution

Standard normal distribution
0 Lety = %, then y~N'(0,1)

Why it is the most widely used distribution?
o It is simple with only two parameters, and easy to be used

o Many phenomena in real world have an approximate Gaussian
distribution

o According to the central limit theorem, the sums of independent random
variables have an approximate Gaussian distribution
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‘ Multivariate Gaussian distribution

= Also called multivariate normal distribution

0 For a D-dimensional random vector x = (X1, X5, ..., Xp)

0 Mean vector E(x) = u

0 Covariance matrix X = cov(x)

0 Probability density function

N (x|p, %)

1

(2m) P2 [ [1/2

| )
exp | =5 (x = p) 7 (x — p)

2025/9/17
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‘ The Poisson distribution

We say that X € {0,1,2,...} has a Poisson distribution with parameter A > 0

X ~ Poi(\), if its pmf is
_\ AT
1'

Poi(xz|\) = e

gaf Plo=—= k)—e_’\zzg)‘—,, =l 1Lk [

The Poisson distribution is often used as a model for counts of rare
events like radioactive decay and traffic accidents
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‘ The Poisson distribution

= Considering a binomial distribution

r=k)= " nh

I “(1-p)

k

m (@) (-2

/1k

— lim

/1k

n! A AR Ak
=) (177 = Tl

k

n!

nk(n — k)! (1 —

n! (1 £>" A lim n! lim (1 —i)
T koo k- n) T kntem—k)(n—Dknse\" 7
nn—1)(n—-2)..(n—

O

n

(1-3)

n

im lim (1 — —)
kiw (n — DD@
n
. n(n-1)(n-2)..(n—-k+1) _ . nk_ ‘ ( _ i) — -A
lim,, e 1) = lim,,_, n_k_l’ limy e (1 ~) = €
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Mean and Variance of Poisson Distribution

Recall the mean of a binomial distribution B(#n, p) = np, variance of
B(n, p) = np(1-p)= A(1-p)
Since Poisson distribution is an approximation of binomial

distribution when n is approaching infinity, and p is extremely
small, then its mean E(x)=np= A

Variance A(1-p) ~ A when p is very small
Mean and Variance of Poisson distribution are the same: A
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Student t distribution

Gaussian distribution is sensitive to outliers.
o A more robust distribution is Student t distribution

-) —(U:l)
' 1 /x2—u\* P
,T(;l.”,ll..o’z,l/) x !1___(1 y)]
vV a

. 9 .
where p is the mean, 0 > 0 is the scale parameter, and v > 0

2
vo*
(v —2)

mean = p, mode = i, var =

0 When v=1, it is known as Cauchy or Lorentz distribution,
which has a heavy tail

0 When v>>5, it approaches to Gaussian distribution
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‘The Laplace distribution

= Also called double sided exponential distribution

1 T — [
Lap(x|p.b) = 2bexp< | ; |)

Here s« is a location parameter and b > 0 is a scale parameter.

P(x) D(x)
mean = [, mode = [, var = 2b2
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pdf and log(pdf)

(a) The pdf’s for a N(0,1), 7(0,1,1) and Lap(0, 1/4/2). The mean is 0 and the variance
is 1 for both the Gaussian and Laplace. The mean and variance of the Student is undefined when v = 1.
(b) Log of these pdf’s. Note that the Student distribution is not log-concave for any parameter value, unlike
the Laplace distribution, which is always log-concave (and log-convex...) Nevertheless, both are unimodal.
Figure generated by studentLaplacePdfPlot.

2025/9/17
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‘ Effect of Outliers

05 051

I | = = = m gaussian = = = m gaussian
| s student T s student T
' ‘ ==m == [3place == = |3place
0.4 |

[llustration of the effect of outliers on fitting Gaussian, Student and Laplace distributions. (a)
No outliers (the Gaussian and Student curves are on top of each other). (b) With outliers. We see that the
Gaussian is more affected by outliers than the Student and Laplace distributions. Based on Figure 2.16 of
(Bishop 2006a). Figure generated by robustDemo.

2025/9/17 Generative Models: Fundamentals and Applications 49



‘ The Gamma distribution

= The Gamma distribution is a flexible distribution for positive

real valued random variables
b(l
s

Ga(T'|shape = a,rate = b) = Te— =1t F(z): et M(z) >
F(a) IS eR %
1 a
a a — T
mean = -, mode = G J U u
A = | ﬂ o
o ==—ra=2.0,b=1.0 .. i i 5 T
7\
/ \\
I Nl
(a) | (b)
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‘ Beta distribution

u Interval [0,1]
= Probability density distribution

1

Beta(x|a,b) = Bla.b)

(1 — ;Lf)b_l

a0 where B(a, b) is Beta function

a
= mean =-———

a+b
var ab
. —_—
(a+b)?(a+b+1)
a—1
= mode=
a+b-2
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‘ Beta distribution

2.5

beta distributions
| m— 2-0.1, b=0.1 /\
=mm==g=10, b=1.0 / \
= g-2 0, b=3.0 \
e = 2-8.0, b=4.0 /

\ W g=b=1, uninform
distribution

® g and b <1, bimodal
distribution with the spikes
atOand 1

® g and b >1, unimodal
distribution
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‘ Conjugate prior

= Bayes in general
p(0x)xp(x|6)p(@) ->p(0]x) isoften a complex integral
= With conjugate prior

* Prior:
0 ~ Beta(a,b)
» Likelihood (for Bernoulli observations x4, ..., z,):
2,/0 ~ Bernoulli(9), i=1,....n Just to up.date parameters,
much easier!
» Posterior:

n T
Olzy,...,xp ~ Beta<a+ Zmi, b+n— E:c,)
i=1 i=1
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'Dirichlet distribution

= A multivariate generalization of the beta distribution
0 Probability simplex

K
SK = {X : 0 S L S 1.Z;Ek = 1}
k=1
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'Dirichlet distribution

= A multivariate generalization of the beta distribution
0 Probability density function

K
1
Dir(x|ar) & —— 2 (x € Sk)
where
K K
Bla) 2 [T T(ak) ap = Y 1 Ok

Concentration parameter
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'Dirichlet distribution

= Property

a0 Mean
0 Mode

0 Variance

mode [xy] =

ap — 1

g — IXr

ar(ag — ag)

var (x| =

Qi%(aio -1 1)

a
mean = —
a+b
var = ab
(a+b)2(a+b+1)
a—1
mode =
a+h-2
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'Dirichlet distribution

K
Dir(x|a) = BLO‘) Hkl.';:k_lﬂ(XESK)
= Example =
01
0, 3
03
K=3 a = (2,2,2)

104 :
54 . |
0.
1 4
1
05
05

a = (20,2,2) o = (0.1,0.1,0.1),
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‘ Transformation of random variables

= Question: If X ~ p(x) is some random variable, and Y = f(X),
what is the distribution of Y ?
o If fis linear transformation
o If fis general transformation

2025/9/17 Generative Models: Fundamentals and Applications
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‘ Transformation of random variables

= Linear transformation

0 The function f() is a linear function
Y=f(X)=AX+Db

where A is a matrix, and b is a vector

ElY]=E[AX +b] = Au+ b,
cov]Y] = cov[AX + b = ADA",

2025/9/17 Generative Models: Fundamentals and Applications
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‘ Transformation of random variables

= Linear transformation

Original Distribution (X)

4 -
ol After Linear Transformation (Y = AX+Db)
2.5
K X R Yo" Ss
00 % \.\ .r, < ‘}/\
0 o,
—25¢f
-5.0f
_2 -
—-7.5¢E :
-5 0 5 10 15
-4+t
—4 ) 0 2 4
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‘ Transformation of random variables

= Linear transformation

0 Special case
= If f() is a scalar-valued function
Y=fX)=a'X+b

where a is a vector, and b is a value

EY]=Ela'X +b =a'p+9,

var[Y] = var[a’ X + b] = o' Za.

2025/9/17 Generative Models: Fundamentals and Applications
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‘ Transformation of random variables

= General transformation

o If X is discrete Z pa (2

x:f(x)=

= Example:
X={1,2,3,4,5}, uniform distribution
f(X) =1 if X is even, and f(X) = 0 otherwise

P,(1)
x€{2,4}
E Py(0)= ) Puz)=06

ze{1,3,5}
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‘ Transformation of random variables

= General transformation

o If X is continuous

Priy) =PY £9)=Pf(X) £y)=PX € {zaflz) Sy}

= If () is an invertible function (change of variables formula)

Py(y) = P(f(X)<y)=P(X < f(y) = P(f(y))

d d dr d dx dx‘

py(y) & —P,(y) = —P, = L p(r) = pe(a &x
Py(y) a1 u (V) » (f () 7 s 2 () dlpa‘(l) det |

2025/9/17

Generative Models: Fundamentals and Applications 63



‘ Transformation of random variables

= General transformation

o If X is continuous (change of variables formula)

dx
py(y) = pm<ar>|df;l

= Example: X~ U(-1, 1), and Y = X2. What is p,, () ?

1
px(x) = E

1 1 1

) = 00| = e (g = o =
dx

~1/2
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Central limit theorem (CLT)

2

Given i.i.d. X4, X5, ..., Xy, each with mean u and variance o~.

Let Sy = YN, X;, the probability density function of Sy, is

: 1 (s — Npu)?
p(Sn = s) = Vo~ N, CXP <_ IN 52

Let X = %Zlivzl Xj, the probability density function of Z)
Sy —Nu X-—
Zy & N U _ U

oVN o /NN

converges to the standard normal N'(0,1).
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‘ Central limit theorem (CLT)

1
0 05 1 05 1

(a) (b)

Figure 2.17 The central limit theorem in pictures. We plot a histogram of % Zil xij, where x;; ~
Beta(1,5), for j = 1 : 10000. As N — oo, the distribution tends towards a Gaussian. (a) N = 1. (b)
N = 5. Based on Figure 2.6 of (Bishop 2006a). Figure generated by centralLimitDemo.
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Monte Carlo approximation

Question: How to compute the distribution of a function of a
random variable X?

0 Generate N samples from the distribution, call them x4, x5, ..., xy
Markov chain Monte Carlo (MCMC)

0 Approximate the distribution of £(X) by using the empirical
distribution of {f (x,), f (x3), ..., f (xn)}
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‘Monte Carlo approximation

= How to Compute E(f(X))?

a0 Generate x¢, x5, ..., xy ~ p(X)

N
1
BO0) = | fap@dx = 3 ) )
i=1
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‘Monte Carlo approximation

= Example: X~ N(0, 1), and Y =sin(X). What is p,, () ?

Samples from X ~N(0O, 1)

r

:

r

r

R

|

|

ity

Den

Monte Carlo approx. of Y =sin(X)

o

i

-1.0

-0.5

0.5

1.0
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‘ Accuracy of Monte Carlo approximation

2025/9/17

oo
0

0
05

10 samplas
T

100 samples
T

(a)

10 samples
T

10 and 100 samples from
a Gaussian distribution,
N = 1.5, 6= 0.25).
Solid red line 1s true pdf.
Top line: histogram of
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Accuracy of Monte Carlo approximation

Denote by u the exact mean of {(X)

u=E[f(X)]
Denote by g the exact variance of f(X)

o® = var [f(X)] = E [f(X)?] —E[f(X)]’

Denote by fi the mean of MC approximation

A 2
fA—p->N0%5)

Denote by 6% the variance of MC approximation
y PP

6% = -3 (F -2
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Information theory

= Entropy (H(X) or H(p))

Q

Measure of the uncertainty of a random variable X
with distribution p

K
H(X) £ =) p(X =k)log,p(X = k)
k=1

= Entropy is maximized if p(X = k) = % (uniform distribution)

= Entropy is minimized if distribution with delta-function that has all its mass
on one state.
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Information theory

= Example: binary random variable X € {0,1}

aopX=1)=286
aopX=0)=1-6

H(X) = —[pX =1)logyp(X =1)+p(X =0)log, p(X = 0)]
—[Alog, 6 + (1 — 6)logy (1 — 6)]

1F

H(X)
o
(42}

0.5
p(X=1)
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Information theory

Conditional Entropy

0 The remaining uncertainty of X when Y is already known

H(X|Y)= - p(z,y) logp(z|y)

T,y

Joint Entropy

0 The total uncertainty when considering variables X and Y together

H(X’Y) = Zp(xay) log p(z, y)

T,y
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Information theory

= Cross entropy

o The average number of bits needed to encode data coming from a
source with distribution p when we use model q to define our

codebook

H(p,q) £ =) prloga
k.

0 Special case

H (p) = H(p,p)
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Information theory

= Example:

0 Suppose tomorrow’s weather has true distribution:
« p={P(Sunny) = 0.9 » P(Rainy) = 0.1}

H(p) = —[0.91og, 0.9 + 0.1log, 0.1] = 0.47 bits.

o If we model g that assumes equal probability: g = {0.5/ 0.5},
the cross-entropy becomes

H(p,q) = —[0.910g, 0.5 + 0.11log, 0.5] = 1 bit. -> At more expense
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Information theory

= KL divergence (relative entropy)

0 Measure the dissimilarity of two probability distributions p and q

k=1

= ) prlogpk — Zl)k log g, = —H (p) + H(p. q)
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Information theory

= KL divergence (relative entropy)

0 Theorem (Information inequality)
KL (pllq) > 0 with equality iff p = q.

0 Result: discrete distribution with the maximum entropy is the
uniform distribution

H (X) < log|X]

0 < KL(p|lu) = > p()log %

= Zp(il?) log p(z) — Zp(:l:) logu(z) = —H(x) + log | X|.

x x
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Information theory

= Mutual information

0 Find out how much knowing one variable can tell us about the other

[(X:Y) 2 KL (p(X.Y)|[p(X)p(Y) =3 ) p(r,y)log- p(fl'f w
i p(z)p(y)

o Symmetry: I(X;Y) = I(Y; X)
o0 Non-negativity: I(X;Y) = 0 with equality iff p(X,Y)=p(X) p(Y)
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Information theory

= Mutual information

0 Measure the reduction in uncertainty about X after observing Y
0 Measure the reduction in uncertainty about Y after observing X.

[(X:Y)=H(X)-H(X

Y)=H((Y)-H(Y

X)
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Information theory

H(XY)

2 e 1CX;Y) = H(X) — H(X|Y)
= H(Y) — H(Y|X)
= H(X) + H(Y) — H(X,Y)

= H(X,Y) — H(X|Y) — H(Y|X)

H(X) H(Y)
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Summary

Basic probability
o Frequentist vs. Bayesian

o Event, random variable, probability, conditional/joint probability, Bayes rule, independence,
conditional independence, correlation

o Common statistics: mean, median, mode, variance, standard deviation, covariance, correlation
coefficient

Distribution

o Empirical, binominal/Bernoulli, multinominal/Multinoulli, uniform, Gaussian, multivariate
Gaussian, Student t, Laplace, Poisson, Beta, Gamma, Dirichlet

Transformation of variables
o Linear transformation, general transformation, CLT, Monte Carlo approximation
Information theory

o Entropy, conditional/joint entropy, cross-entropy, KL divergence, mutual information
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Thanks!

Questions?



