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Outline

n Some basic concepts of probability theory
n Some common distributions
n Transformations of random variables
n Monte Carlo approximation
n Information theory    
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What is probability?

n Frequentist interpretation
q Probability represents long run frequencies of events
q It interprets probability as the frequency of occurrence of an outcome

n Bayesian interpretation
q Probability is used to quantify the uncertainty about something
q It interprets probability as our believe of the likelihood of a certain 

outcome, i.e, probability measures a degree of belief
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Probability of an event

n Let A be an event 
q P(A): the probability that the event A is true

n 0 ≤ P(A) ≤ 1
n P(A) = 0 means the event definitely will not happen
n P(A) = 1 means the event definitely will happen

q 𝑃(𝐴̅): the probability that the event not A
n 𝑃 𝐴̅ = 1 − 𝑃(A)
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Probability of a random variable

n Discrete random variable X
q take on any value from a finite or countably infinite set 𝒳

n Example: event vs. random variable
q Event A={明天会下雨}
q Random variable X={0,1}

n 1 表示明天会下雨
n 0 表示明天不会下雨

q P(X=1) = P(A)
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Probability of a random variable

n Example: event vs. random variable
q Event A={明天会下雨}
q Random variable X={1,2,3,4}

n 1 表示明天会下雨
n 2 表示明天下雪
n 3 表示明天下冰雹
n 4 表示明天是晴天

q P(X=1) = P(A)
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Probability of a random variable

n Probability mass function P(X=x) (or P(x))
q the probability of the event that X = x
q 0 ≤ 𝑃 𝑥 ≤ 1
q ∑!∈𝒳 𝑃 𝑥 = 1
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𝒳 = 1,3,7



Probability of a random variable

n Special case
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𝒳 = 1,2,3,4 𝒳 = 1



Basic rules of probability

n Probability of a union of two events
q Given two events A and B
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Basic rules of probability

n Joint probability
q Given two events A and B

q Marginal distribution (rule of total probability)

2025/9/17 Generative Models: Fundamentals and Applications 10

𝑃 𝐴, 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃 𝐵 𝐴
= 𝑃 𝐵 𝑃 𝐴 𝐵

𝑃(𝐴) =-
!

𝑃 𝐴, 𝐵 =-
!

𝑃(𝐴|𝐵 = 𝑏)𝑃(𝐵 = 𝑏)



Basic rules of probability

n Joint probability
q chain rule

n Conditional probability
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𝑃 𝐴 𝐵 =
𝑃(𝐴, 𝐵)
𝑃(𝐵) , if 𝑃(𝐵) > 0

𝑃 𝑋!, 𝑋", …𝑋#
= 𝑃 𝑋! 𝑃 𝑋" 𝑋! 𝑃 𝑋$ 𝑋!, 𝑋" …𝑃(𝑋#|𝑋!, 𝑋", … , 𝑋#%!)



Bayes rule/theorem 
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Example: medical diagonsis

n Question：If the nucleic acid test (NAT) is positive, what is 
the probability you have COVID-19?

n X = 1 is the event NAT is positive
n Y = 1 is the event you have COVID-19
n Sensitivity score: P(X = 1|Y = 1) = 0.8
n P(Y = 1) = 0.004
n P(X = 1|Y = 0) = 0.1
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Independence and conditional 
independence
n Unconditionally independent (marginally independent)
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We say X and Y are unconditionally 
independent or marginally 
independent, if we can represent 
the joint as the product of the two 
marginals



Independence and conditional 
independence
n Conditionally independent (CI)
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We say X and Y are conditionally independent 
(CI) given Z iff the conditional joint can be 
written as a product of conditional marginals:

𝑃 𝑋 ⊥ 𝑌 𝑍 ⟺ 𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍)



Probability in continuous case

n Continuous random variable X
q Cumulative distribution function (cdf)

q Probability density function (pdf)

q Probability in some interval [a, b]
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𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥)

𝑝 𝑥 =
𝑑
𝑑𝑥 𝐹(𝑥)

𝑃 𝑎 < 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹(𝑎) = @
"

!
𝑝 𝑥 𝑑𝑥



Probability in continuous case

n Example
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pdfcdf



Probability in continuous case

n Example

2025/9/17 Generative Models: Fundamentals and Applications 18

The pdf  p(x)  

𝑝 𝑥 = A2, 0 ≤ 𝑥 ≤ 0.5
0, otherwise



Mean and Variance

n Mean (expected value) 𝜇
q Discrete case

q Continuous case
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𝐸[𝑋] ≜-
#∈𝒳

𝑥𝑃(𝑥)

𝐸[𝑋] ≜ @
#∈𝒳

𝑥𝑝 𝑥 𝑑𝑥



Mean and Variance

n Variance 𝜎P

n Standard deviation
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var[𝑋] ≜ 𝐸 𝑋 − 𝜇 & = 𝐸 𝑋& − 𝜇&

std[𝑋] ≜ var[𝑋]



Mean and Variance
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The variance estimation

n Population variance
q s! = "

#
∑$%"# (𝑥$ − 𝜇)!=

"
#
∑$%"# 𝑥$! − 𝜇!

q 𝜇="
#
∑$%"# 𝑥$

n Sample variance
q Taking n samples from the population, estimate  the variance

n s&! =
"
'
∑$%"' (y$ − 𝜇&)!, 𝜇&="

'
∑$%"' 𝑦$

q Sampling multiple times, computing the expected valued of s!"

n 𝐸 s&! = '("
'
s!, so s! = '

'("
𝐸 s&!

q We take the variance of one time sampling as 𝐸 s&! , the sample variance 𝑠! is

n 𝑠! = "
'("

∑$%"' (𝑦$ − 𝜇&)!

2025/9/17 Generative Models: Fundamentals and Applications 22



Mean, median and mode: measure of central 
tendency
n Mode: the most frequent number occurring in the data set
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Covariance and correlation

n Covariance
q Given two random variables X and Y
q Measure the degree to which X and Y are (linearly) related

n Correlation coefficient
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Covariance and correlation
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The correlation reflects the noisiness and direction of a linear relationship



Independence vs. correlation

n If two random variables are independent, they are 
uncorrelated

n If two random variables are uncorrelated, they may be 
dependent

n If two variables of gaussian distribution are uncorrelated, 
they are independent 
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Joint distribution probability

n For 𝑋T, 𝑋P, … , 𝑋U
q More than 1 variable
q Model stochastic relationships between the variables

n Denote a d-dimensional random vector 𝒙 = (𝑋', 𝑋&, … , 𝑋()

q Number of parameters 𝑂(𝐾$)
n K: the number of states for each variable
n d: the number of variables
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Covariance and correlation

n Covariance matrix
q For a d-dimensional random vector 𝑥 = (𝑋%, 𝑋&, … , 𝑋$)
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Covariance and correlation

n Correlation matrix
q For a d-dimensional random vector 𝑥 = 𝑋%, 𝑋&, … , 𝑋$

q All diagonal elements are 1, and the others fall in [-1, 1]
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Covariance and correlation
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Some common distributions

n Empirical distribution
n Binominal/Bernoulli distribution
n Multinominal/Bernoulli distribution
n Uniform distribution
n Gaussian distribution
n The multivariate Gaussian distribution
n Poisson distribution
n Beta distribution
n Dirichlet distribution
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Empirical distribution

n Also called empirical measure
q Given a set of data 𝒟 = {𝑥!, 𝑥", … , 𝑥2}, the empirical distribution 

(empirical measure) is defined as

where 𝛿!(𝐴) is the Dirac measure, defined by

and A is a given value
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Empirical distribution

n Empirical CDF (eCDF)
q Generalized definition: weight
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Empirical distribution

n The empirical distribution converges to the true distribution 
with probability 1
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The binomial and Bernoulli distributions

n Binomial distribution: toss a coin n times, the probability of 
having k heads

n Bernoulli: a special case of binominal distribution where tossing a 
coin only once  
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mean=nq,  var= nq (1- q)



The multinomial and multinoulli
distributions
n Multinomial distribution

q tossing a die of K-side n times, x=(x1, x2, …, xk) is a vector indicating 
the appearing time of each side

n Multinoulli: a special case of multinomial distribution with 
n=1
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Summary of the multinomial and related 
distributions
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Uniform distribution

n Uniformly distributed in the interval [a,b]
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Uniform distribution

n Uniformly distributed in a region R
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Unif 𝑥 𝑅 =
1
|𝑅|

𝕀[𝑥 ∈ 𝑅]



Gaussian distribution
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n Also called normal distribution
q Univariate continuous probability distribution
q Probability density function

q Cumulative distribution function



Gaussian distribution

n Standard normal distribution
q Let 𝑦 = !'(

)
, then y~𝒩(0,1)

n Why it is the most widely used distribution?
q It is simple with only two parameters, and easy to be used
q Many phenomena in real world have an approximate Gaussian 

distribution
q According to the central limit theorem, the sums of independent random 

variables have an approximate Gaussian distribution  
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Multivariate Gaussian distribution

n Also called multivariate normal distribution
q For a D-dimensional random vector 𝒙 = (𝑋%, 𝑋&, … , 𝑋*)
q Mean	vector	𝐸 𝒙 = 𝝁
q Covariance	matrix		Σ = cov(𝒙)
q Probability	density	function
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The Poisson distribution
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The Poisson distribution is often used as a model for counts of rare 
events like radioactive decay and traffic accidents



The Poisson distribution

n Considering a binomial distribution
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Mean and Variance of Poisson Distribution 

n Recall the mean of a binomial distribution B(n, p) = np, variance of 
B(n, p) = np(1-p)= λ(1-p)

n Since Poisson distribution is an approximation of binomial 
distribution when n is approaching infinity, and p is extremely 
small, then its mean E(x)=np= λ

n Variance λ(1-p) ~ λ when p is very small
n Mean and Variance of Poisson distribution are the same: λ
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Student t distribution

n Gaussian distribution is sensitive to outliers.
q A more robust distribution is Student t distribution

q When v=1, it is known as Cauchy or Lorentz distribution, 
which has a heavy tail

q When v>>5, it approaches to Gaussian distribution
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The Laplace distribution

n Also called double sided exponential distribution
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pdf and log(pdf)
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Effect of Outliers
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The Gamma distribution

n The Gamma distribution is a flexible distribution for positive 
real valued random variables
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Beta distribution

n Interval [0,1]
n Probability density distribution

q where B(a, b) is Beta function
n mean = "

")!

n var = "!
(")!))(")!)')

n mode = ",'
")!,&
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Beta distribution

n a=b=1, uninform 
distribution

n a and b <1, bimodal 
distribution with the spikes 
at 0 and 1

n a and b >1, unimodal 
distribution
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Conjugate prior

n Bayes in general

n With conjugate prior
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𝑝 𝜃 ∣ 𝑥 ∝ 𝑝 𝑥 ∣ 𝜃 𝑝 𝜃     ->  𝑝 𝜃 ∣ 𝑥 is often a complex integral

Just to update parameters, 
much easier!



Dirichlet distribution

n A multivariate generalization of the beta distribution
q Probability simplex
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Dirichlet distribution

n A multivariate generalization of the beta distribution
q Probability density function

where 
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Concentration parameter



Dirichlet distribution

n Property
q Mean 

q Mode

q Variance
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K=3

Dirichlet distribution

n Example 
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Transformation of random variables

n Question: If X ∼ p(x) is some random variable, and Y = f(X), 
what is the distribution of Y ?
q If f is linear transformation
q If f is general transformation
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Transformation of random variables

n Linear transformation
q The function f() is a linear function

𝑌 = 𝑓 𝑋 = 𝐴𝑋 + 𝑏
where A is a matrix, and b is a vector
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Transformation of random variables

n Linear transformation
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Transformation of random variables

n Linear transformation
q Special case

n If f() is a scalar-valued function
𝑌 = 𝑓 𝑋 = 𝑎+𝑋 + 𝑏

where 𝑎 is a vector, and 𝑏 is a value
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Transformation of random variables

n General transformation
q If X is discrete

n Example: 
X={1,2,3,4,5}, uniform distribution
f(X) = 1 if X is even, and f(X) = 0 otherwise
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Transformation of random variables

n General transformation
q If X is continuous

n If f() is an invertible function (change of variables formula)
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det
𝑑𝑥
𝑑𝑦



Transformation of random variables

n General transformation
q If X is continuous (change of variables formula)

n Example: X∼ U(−1, 1), and Y = 𝑋". What is 𝑝!(𝑦) ?
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𝑝- 𝑦 = 𝑝# 𝑥
𝑑𝑥
𝑑𝑦

= 𝑝# 𝑥
1
𝑑𝑦
𝑑𝑥

=
1
2

1
|2𝑥|

=
1
4
𝑦,'/&

𝑝# 𝑥 =
1
2



Central limit theorem (CLT)

Given i.i.d. 𝑋!, 𝑋", … , 𝑋2, each with mean 𝜇 and variance 𝜎". 
Let 𝑆2 = ∑78!2 𝑋7, the probability density function of 𝑆2 is 

Let 1𝑋 = !
2
∑78!2 𝑋7, the probability density function of 𝑍2

𝑍2 ≜
𝑆2 −𝑁𝜇
𝜎 𝑁

=
1𝑋 − 𝜇
𝜎/ 𝑁

converges to the standard normal 𝒩(0,1).
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Central limit theorem (CLT)
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Monte Carlo approximation

n Question: How to compute the distribution of a function of a 
random variable X?
q Generate N samples from the distribution, call them 𝑥%, 𝑥&, … , 𝑥,

n Markov chain Monte Carlo (MCMC)

q Approximate the distribution of f(X) by using the empirical 
distribution of {𝑓(𝑥%), 𝑓(𝑥&), … , 𝑓(𝑥,)}
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Monte Carlo approximation

n How to Compute 𝐸(𝑓(𝑋))？
q Generate 𝑥%, 𝑥&, … , 𝑥, ∼ 𝑝(𝑋)
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𝐸(𝑓(𝑋)) = @𝑓 𝑥 𝑝 𝑥 𝑑𝑥 ≈
1
𝑁-

/0'

1

𝑓(𝑥/)



Monte Carlo approximation

n Example: X∼ N(0, 1), and Y =sin(X). What is 𝑝4(𝑦) ?
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Accuracy of Monte Carlo approximation
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10 and 100 samples from 
a Gaussian distribution, 
N(μ = 1.5, σ2 = 0.25).
Solid red line is true pdf. 
Top line: histogram of 
samples. 
Bottom line: kernel 
density estimate derived 
from samples in dotted 
blue



Accuracy of Monte Carlo approximation

n Denote by 𝜇 the exact mean of f(X) 

n Denote by 𝜎P the exact variance of f(X) 

n Denote by +𝜇 the mean of MC approximation

n Denote by !𝜎! the variance of MC approximation 
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𝜇 = 𝐸[𝑓(𝑋)]

𝜇̂ − 𝜇 → 𝒩(0, 2
)

1 )

e𝜎& = *
+ ∑,-*

+ 4 #, ,9: )



Information theory

n Entropy (ℍ 𝑋 or ℍ 𝑝 )
q Measure of the uncertainty of a random variable X 

with distribution p

n Entropy  is maximized if 𝑝 𝑋 = 𝑘 = '
5

(uniform distribution)

n Entropy is minimized if distribution with  delta-function that has all its mass 
on one state.
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Information theory

n Example:  binary random variable 𝑋 ∈ {0,1}
q 𝑝 𝑋 = 1 = 𝜃
q 𝑝 𝑋 = 0 = 1 − 𝜃
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Information theory

n Conditional Entropy
q The remaining uncertainty of 𝑋 when 𝑌 is already known

n Joint Entropy
q The total uncertainty when considering variables 𝑋 and 𝑌 together
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Information theory

n Cross entropy
q The average number of bits needed to encode data coming from a 

source with distribution p when we use model q to define our 
codebook

q Special case 
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Information theory

n Example:
q Suppose tomorrow’s weather has true distribution:

n 𝑝 = 𝑃 Sunny = 0.9 𝑃 Rainy = 0.1

q If we model 𝑞 that assumes equal probability: 𝑞 = 0.5 0.5 ,
the cross-entropy becomes
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-> At more expense



Information theory

n KL divergence (relative entropy)
q Measure the dissimilarity of two probability distributions p and q
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Information theory

n KL divergence (relative entropy)
q Theorem (Information inequality)

q Result: discrete distribution with the maximum entropy is the 
uniform distribution
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Information theory

n Mutual information
q Find out how much knowing one variable can tell us about the other

q Symmetry: 𝕀 𝑋; 𝑌 = 𝕀 𝑌; 𝑋
q Non-negativity: 𝕀 𝑋; 𝑌 ≥ 0 with equality iff p(X,Y)=p(X) p(Y)
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Information theory

n Mutual information
q Measure the reduction in uncertainty about X after observing Y 
q Measure the reduction in uncertainty about Y after observing X.
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Information theory
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𝕀 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

= 𝐻 𝑋, 𝑌 − 𝐻 𝑋|𝑌 − 𝐻(𝑌|𝑋)



Summary

n Basic probability
q Frequentist vs. Bayesian
q Event, random variable, probability, conditional/joint probability, Bayes rule, independence, 

conditional independence, correlation
q Common statistics: mean, median, mode, variance, standard deviation, covariance, correlation 

coefficient
n Distribution

q Empirical, binominal/Bernoulli, multinominal/Multinoulli, uniform, Gaussian, multivariate 
Gaussian, Student t, Laplace, Poisson, Beta, Gamma, Dirichlet

n Transformation of variables
q Linear transformation, general transformation, CLT, Monte Carlo approximation

n Information theory
q Entropy, conditional/joint entropy, cross-entropy, KL divergence, mutual information
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Thanks!

Questions?


