S ABSSE T

MR R GirA (CF=83)

30

L DN:(¢ 28

25 26
20
15
10 11

5

-
0

0-59.9 60-69.9 70-79.9 80-89.9 90-100

Introduction to Databases

KBRS

Lecture 8: Indexing & Hashing
B8k K5l GWA

HKkpPE / Shuigeng Zhou

BEHE: sgzhou@fudan.edu.cn PHE: admis.fudan.edu.cn/sgzhou

—

H BREWFHBEBOR ER

Outline of the Course

* Part O: Overview = Part 3 Data Storage & Indexin
- Lect. 1(Feb. 29) - Chl: Introduction - Lect. 7 (May 2 -> Apr. 28) - Ch12/1
Storage systems & structures

Part 1 Relational Databases _ .
- Lect. 2 (Mar. 7) - Ch2: Relational model - Lect. 8 (May 10) - Ch14: Indexing and

(data model, relational algebra) Hashing
- Lect. 3 (Mar. 14) - Ch3: SQL (Introduction) - Part 4 Query Processing & Optimization

- Lect. 4 (Mar. 21) - Ch4/5: Intermediate and - Lect. 9 (May 17) - Ch15: Query processing
Advanced SQL - Lect. 10 (May 24) - Ch16: Query

Par'f 2 Database Design optimization
Lect. 5 (Mar. 28) - Ch6 Database design . Par"r 5 Transaction Management

based on E-R model Lect. 11 (May 31) - Ch17: Transactions
- Apr. 4 (Tomb-Sweeping Day): ho course - Lect. 12 (Jun. 7) - Ch18: Concurrency
- Lect. 6 (Apr. 11/18) - Ch7: Relational control
database design - Lect. 13 (Jun. 14) - Ch19: Recovery system

° [Midterm exam: Apr. 25]

- 13: 00-15: 00, H3109 Final exam: 1300-1500, Jun. 26

@ Basic Concepts
Ordered Indexing
B*-tree & B-tree Indices
Static & Dynamic Hashing
Ordered Indexing vs. Hashing
Index Definition in SQL
Multiple-key Access

Basic Concepts

Query (Eif)

- The expression of user' requirements of data in the database using use
some query language such as SQL

- The major form of data access in DBs

For example

- select loan_number
from loan
where branch_name = Perryridge’ and amount > 1200

Indexes (Z25|) are a kind of data structures for speeding up
query processing

Basic Concepts

Indexing mechanisms

- Speed up the access to desired data

- Index files are typically much smaller than the original file
Search Key(iEZ=i3/XEF)

- The set of attributes used to look up records in a file/table

- An index file consists of records (called index entries, Z5|IR) of the
form (search-key, pointer)

Two kinds of indices
- Ordered index (JiF25]): search keys are stored in sorted order

- Hash index (E5UZ=5]): search keys are distributed uniformly across
"buckets” using a “hash function”

search-key pointer

Why indexes work?

5 [AREMEMER, HEW (ZXW, B %) AR=EVN, FrLinE
RE R

- NMRFRPH—RICRERE L SR 1000=FT, WEHAPI0FTHN—) FEREZ5], BB
AZICFEXI MRS TR/ NRABE10F1, WSQL ServerfIG/NSEISDECERITRE "1
Page", —/\\TOfxH4EE L (5FE8K=SE], RILAFME LIAICHE8%:, (BJLIFMEZ5(8005

- M—PEBO0OFICEREZFIREMEENFMHNCE, WNgEZRS|, AJaeEERH8000
22 x 100035 /8K=F5=-1000) T E A Bt Bl 45ER

- WMBRERZRFER EE LAZES|, WeJLAE80005 % 1015 /8K=FT5=10/ TN E P =RE!
WEFMRZRS R (ATUMERFEF) |, REIRIERS IR EAVEEHE—IKEEREIER
, XL/ OpREE/MREE

Index Evaluation Metrics

Access types supported efficiently
- Equal-query (%{E##), Range-query (FEEIZE#), kNN.....

select loan_number select loan_number
from loan from loan
where branch_name = 'Perryridge’ where amount > 1200

Access time:1)j [d] B [H]
Update (maintenance) time

- g\sjertion time: WA DFEARTN], BFE: RBFEAMCENE + EFR5EH
v rE[
- Deletion time: WER—MEIEHESH, WIFE: IRBFMWERIAA R + BIHRT| LM

Space overhead: Z[AJFF4H, —NEIIEH G HBIMSMAAEZEE

Basic Concepts

@ Ordered Indexing
B*-tree & B-tree Indices
Static & Dynamic Hashing
Ordered Indexing vs. Hashing
Index Definition in SQL
Multiple-key Access

Ordered Indexing-|[iZ=5|

 Ordered index
- Index entries are sorted on the search key value
- Primary index and secondary index
- Primary index (E£25|), clustering index SBEEZT]|
- BEICRAINHRE MERIDIEEINFHEF, 2SRRI NAYZRS TR
clustering index
- Secondary index (§lilhZE5]), no-clustering index (JEEREEZRT)
* An index whose search key specifies an order different from the
sequential order of the file

Index-sequential file (ZESIIHEIZIH)

- Ordered sequential file with a primary index

- E5|IFESERINFE 4R R, HPSRICRASENR EOEIVFASIRY, 887 ERGENE
BUCRAYEEST. FR5 IR S REBRINF S — R THRIEIFALE, BERTHRIEERURF (IBR
HIMAYRR) | BRHRZEINF (RICREXRBEFRENRTF) HITEE, R5IRFUHERA
WEETIRABIRZE|. FFEERS EHISAMMEIEERS |45HVSAM

10

Primary Index: Clustering Index

- REFSHIMTRMESETR, B3 INFmEsiEmEEiEnT. —

MREZREE— I REFRS|

Finding Rows in a Clustered Index

| sysindexes | _id [indid=1 | root | I
Clustered Index

Akhtar

Akhtar

Ganio Smith
Page 141 Page 145
Akhtar 2334 .. Ganio 7678 .. Srnith 1434 .
Barr 5678 .. Hall 8078 ... Smith 5778 ..
Can 2534 .. Jones 2434 . Smith 7978 ..
Funk 1334 .. Jones 5978 .. Phua 7878 .. White 2234 .
Funk 1534 .. Jones 2634 . Rudd 8078 .. White 1634 ..
Page 100 Page 110 Page 120 Page 130

e —

11

Secondary Index: Non-clustering Index

- AERERSINIH T RINARRS TR, B— M IETr8RXINATSTER.
EREFE nFSEREAS IR

Finding Rows in a Heap with a Nonclustered Index

| sysindexes | id [indid=2 [root | .
. Non
Alikee Non-Leaf | cjystered
Page 37 > Page 28 ¢
r. A khfar Page 12 - Root ; /
Ganio frm— Srnith
Page 41 Page 51 Page 6 Page 71 Leaf Level
Akhtar 4:706:01 Ganio 4703:01] Smith 4706:03| (Key Yalue)
Barr 470503 Hall 4:703:04 Smrlh 470804
Con 4:704:01 Jones 4:709:02 FO7
Funk 4:706:02 Jones 4:708:03
——|_Funk 4:704:02 P :
I]
Heap
Page 704 Page 705] Page 703
01 . Gonn ol L] P 01 .. Ganin
02 ... Funk 02 ... White 02 .. Jones
03 ... White 03 .. Barr 03 .. Hall

12

- Dense index (FA%Z=8|)

- Index record appears for every search-key value in the file

Brighton —| A-217 | Brighton 750 S >
Downtown —{ A-101 | Downtown 500 - >
Mianus o A-110 | Downtown 600 -
Perryridge -\ A-215 | Mianus 700 - >
Redwood \h\-» A-102 | Perryridge 400 -g
Round Hill | ~ A-201 | Perryridge 900 y
A-218 | Perryridge 700 - >
A-222 | Redwood 700 = >
A-305 | Round Hill 350 _2-]-

13

Sparse Index

- Sparse Index (f&liz5l)

- Contain index records for only some search-key values when records
are sequentially ordered on search-key (why?)

Brighton ———""""| A-217 | Brighton 750 i

Mianus ~ A-101 | Downtown 500 ->

Redwood \\ A-110 | Downtown 600 -P
A-215 | Mianus 700 -
A-102 | Perryridge 400 -g
A-201 | Perryridge 900 .
A-218 | Perryridge 700 _>
A-222 | Redwood 700 .>
A-305 | Round Hill 350 _Z_L

14

Multilevel Index (Z%Z=5])

If primary index does not fit in memory, data access becomes
expensive

To reduce the number of disk accesses to index records, treat
primary index as a sequential file and construct a sparse index on it

- outer index - a sparse index of primary index
- inner index - the primary index file

If even outer index is too large to fit in main memory, yet another
level of index can be created, and so on

15

Multilevel Index (Cont.)

e
index data
1l | T block 0 | 1N block 0
| °
L
L J
-
-
. . :
1 — R Y
index |\, data
. — block 1 . \block 1
outer index . :
a —
v
inner index -~
o
B
1

16

Dense vs. Sparse Index

* To locate a record with search-key value K:
- Dense index
* Find index record with search-key value = K
- Sparse index
* Find index record with largest search-key value <= K

- Search file sequentially starting at the record to which the index
record points

- Sparse index is generally slower than dense index for locating
records but saves more storage space

- Space and maintenance for insertions and deletions

17

Index Update: Deletion

- Single-level index deletion

- Dense indices - deletion of search-key in index is similar to file
record deletion

Brighton —| A-217 | Brighton 750 = >
Downtown —{ A-101 | Downtown 500 - >
Mianus o A-110 | Downtown 600 E
Perryridge ——\ A-215 | Mianus 700 ->
Redwood * A-102 | Perryridge 400 -g
Round Hill |~ A-201 | Perryridge 900 .
A-218 | Perryridge 700 - >
A-222 | Redwood 700 i >
A-305 | Round Hill 350 -2_1_

18

Index Update: Deletion

- Single-level index deletion

- Sparse indices

if an entry for the search key exists in the index, it is deleted by replacing the
entry in the index with the next search-key value in the file

if the next search-key value already has an index entry, the entry is deleted
instead of being replaced

Brighton

|

A-217

Brighton

750

Mianus

/

A-101

Downtown

500

Redwood

S

A-110

Downtown

600

A-215

Mianus

700

A-102

Perryridge

400

A-201

Perryridge

900

A-218

Perryridge

700

A-222

Redwood

700

A-305

Round Hill

350

MLVAVAVAV,VAVAVA;

19

Index Update: Insertion

Single-level index insertion
- Perform a lookup using the search-key value

- Dense indices - if the search-key value does not appear in the
index, insert it

- Sparse indices - if index stores an entry for each block of the
file, no change needs to be made to the index unless a new block
is created. In this case, the first search-key value appearing in
the new block is inserted into the index

Multilevel insertion/deletion
- Extensions of the single-level algorithms

20

Dense vs. Sparse Index

Space and maintenance for insertions and deletions

- Sparse index needs less space and less maintenance overhead

for insertions and deletions

- Good tradeoff: sparse index with an index entry for every

block in file, corresponding to the least search-key value in the
block

21

Secondary Indices

- Querying by secondary indices
- Example 1: In the account relation stored sequentially by

account number, we may want to find all accounts in a particular
branch

- Example 2: to find all accounts with a specified balance or range
of balances
- Secondary index

- Build a secondary index with an index record for each search-
key value

- Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value

22

Secondary Index on Balance Field of Account

N

A-218 | Perryridge | 700 -
A-222 | Redwood 700
A-305 | Round Hill | 350 | _]

F Y

(.

A-217 | Brighton 750 -P

350 4 N A-101 | Downtown | 500 —P
400 - — A-110 | Downtown | 600 -P
500 o A-215 | Mianus 700 | -
600| = A-102 | Perryridge | 400 %
700 A-201 | Perryridge | 900 _g
»

%_

"/

bucket

g
e
-~
- % X

23

Primary and Secondary Indices

-+ Secondary indices have to be dense (why?)

* When a file is modified, every index on the file must be
updated. Updating indices imposes overhead on database
modification

- Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive

- each record access may fetch a new block from disk

24

- Basic Concepts

* Ordered Indexing

& B*-tree & B-tree Indices

- Static & Dynamic Hashing

* Ordered Indexing vs. Hashing
- Index Definition in SQL

* Multiple-key Access

25

B*-Tree Index Files

B*-tree is an alternative to indexed-sequential file

Disadvantage of indexed-sequential file

- Performance degrades as file grows, since many overflow blocks (izmitR)
get created. Periodic reorganization of entire file is required

B*-tree index file

- Advantage: automatically reorganizes itself with small and local
changes, in the face of insertions and deletions. Reorganization of entire
file is not required to maintain performance

- Disadvantage: extra insertion and deletion overhead, space overhead
- B*-tree is used widely since its advantages outweight the disadvantages

26

Example of B*-Tree

||| Mozart|l| | | | |<- --- Root node

|I|Einstein| | Gold ||| —|_| |_I|S_rinivasan|l| | | | | ;‘—"' Internal nodes

Leaf nodes-,

Y .
Brandt| |Caliﬁeri| |Crick|l-|->| |Einstein| |El Said| | |-|->|_|_Gold | | Katz | | Kim|-|—>|l|Mozart|l| Singh | | |-|->|_|S_rinivasan|l|Wu | | | | %‘—-—-

‘ »| 10101 | Srinivasan | Comp. Sci. | 65000
> 12121 | Wu Finance 90000
> 15151 | Mozart Music 40000
»| 22222 | Einstein Physics 95000
> 32343 | El Said History 80000
>| 33456 | Gold Physics 87000
»| 45565 Katz Comp. Sci. 75000
>| 58583 | Califieri History 60000
> 76543 | Singh Finance 80000
> 76766 | Crick Biology 72000
> 83821 Brandt Comp. Sci. | 92000
> 98345 | Kim Elec. Eng. 80000 27

B*-Tree Index Files (Cont.)

Typical B*-tree node

Pq K1y Py P, 1 K1 P,

- K; are the search-key values. The search-keys in a node are ordered, i.e.,
K1 < Kz < K3 <o < Kn—l

- P; are pointers to children (for non-leaf nodes) or pointers to records
or buckets of records (for leaf nodes)

28

B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree (B1tR#) satisfying the following properties:

- B*-tree is a balanced tree and all the paths from root to leaf nodes are of
the same length

- Internal node
* Each node has between [n/2] and n children (pointers)
- Leaf node
+ Each node has between [(n —1)/2] and n — 1 values
- Root node
« If the root is not a leaf, it has at least 2 children

* If the root is a leaf (i.e., there are no other nodes in the tree), it can have
between O and n-1 values

Pq Ky P, Pyq | Kya Py,

29

Example of a B*-tree

Perryridge
1 1
| Mianus Redwood
] 1
/ l | \
Brighton| |Downtown|-p» | Mianus T—>| [Perryridge T |[Redwood| |Round Hill

B*-tree for account file (n = 3)

Leaf nodes must have between 1 and 2 values ([(n — 1)/2] and n — 1)
Non-leaf nodes other than root must have between 2 and 3 children ([n/2] and n)
Root must have at least 2 children

30

Leaf Node in B*-Tree

* Properties of a leaf node Pr | K | P o | Py | Ky P,

- Pointer P; either points to a file record with search-key value K;, or to
a bucket of pointers to file records, each record having search-key
value K;. Only need bucket structure if the search-key does not form a
primary key (why?)

P, points to next leaf node in search-key order

leaf node
[| Brandt || Califieri|,| Crick |[{————— Pointer to next leaf node
10101 | Srinivasan | Comp. Sci.| 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000 .
32343 |ElSaid | History | 80000 instructor
n-= 33456 | Gold Physics 87000 file

45565 | Katz Comp. Sci.| 75000

> 58583 | Califieri | History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci.| 92000
98345 | Kim Elec. Eng. | 80000 31

Non-Leaf Nodes in B*-Tree

Non leaf nodes form a multi-level sparse index on the leaf nodes.
For a non-leaf node with n pointers:

- All the search-keys in the subtree to which P; points are less than K,

- For 2 <i<n-1,adll the search-keys in the subtree to which P; points
have values greater than or equal to K;_; and less than K;

- All the search-keys in the subtree to which P,, points are greater than
or equal to K,,_4

Pq K1 Py . P, K1 1P

32

Example of B*-tree

El Said |, | Mozart

Brandt| | Califieri| |Crick| |Einstein > |El Said Gold Katz Kim >{ | Mozart

Singh Srinivasan | [Wu

B*-tree for instructor file (n = 6)
- Leaf nodes must have between 3 and 5 values ([(n —1)/2] and n — 1)

- Non-leaf nodes other than root must have between 3 and 6 children ([n/2] and n)
- Root must have at least 2 children

33

Observations about B*-tree

Since the inter-node connections are achieved by pointers, "logically”
close blocks need not be “physically” close

The non-leaf levels of the B*-tree form a hierarchy of sparse indices

The B*-tree contains a relatively small number of levels, and search
can be conducted efficiently

- If there are K search-key values in the file, the tree height is no
more than [log,, »(K)|

+ Level below root has at least 2 =« [n/2] values
* Next level has at least 2 « [n/2] * [n/2]values

Insertions and deletions to the index file can be handled efficiently

34

Queries on B*-Trees

* Find all records with a search-key value of k
- Start with the root node
* Check the node for the smallest search-key value > k
- If such a value exists, assume that it is K;. Then follow P; to the child node

+ Otherwise k > K,,_{, where there are n pointers in the node. Then follow P,, to
the child node

- If the node reached by following the pointer above is not a leaf node, repeat the
above procedure on the node, and follow the corresponding pointer

- Eventually reach a leaf node. If for some i, key K; = k, follow pointer P; to the
desired record or bucket. Else no record with search-key value k exists

Pq K1 Py P, 1 K1 1P

35

Example: Queries on B*-Tree

+ Search begins at root, and key comparisons direct it to a leaf
- Search for Perryridge

| |Perryridge| | | |
] [

Mianus | : Redwood
.l A
I Brighton| |Downtown Mianus . Perryricge F ™ Redwood| |Round Hill
N T T SRS I 7. N N —

36

Example: Queries on B*-Tree

Search begins at root, and key comparisons direct it to a leaf
- Search for 5*, 15*, all data entries >= 24*

Roo&

13 (| 17 || 24 || 30 n=>5

NN

2* | 3* [5* | 7* 144 16* 1971 20* 22* 24*| 27* 29* 33*| 34*(38*| 39*

37

Queries on B*-Trees (Cont.)

- In processing a query, a path is traversed in the tree from the root
to some leaf node

* If there are K search-key values in the file, the path is no longer
than |log,,/»(K)|
- E.g.,anode is generally the same size as a disk block, typically 4 KB,
and n is typically around 100 (40 bytes per index entry)

* With 1 million search key values and n = 100, at most
logso(1,000,000) = 4 nodes are accessed in a lookup.

* For a balanced binary tree with 1 million search key values — around 20
nodes (i.e., log,(1,000,000)) are accessed in a lookup

- The above difference is significant since every node access may need a disk
I/0, costing around 10 ms

38

Insertion in B*-Tree

Find the leaf node in which the search-key value would appear

- If the search-key value is already in the leaf node
* record is added to file
- if necessary, a pointer is inserted into the bucket

- If the search-key value is not in certain node, add the record to the
main file and create a bucket if necessary. Then:

« If there is room in the leaf node, insert (key-value, pointer) pair in the
leaf node

+ Otherwise, split the node along with the new (key-value, pointer) entry

39

Insertion in B*-Tree (Cont.)

Perryridge i
n=3
Mianus Redwood
Y A

Brighton IannInwnI Mianus > I!'crr_\-ridgv > IRedwood IRound Hill

Perryridge

=

Downtown | | Mianus Redwood
A 4

hwood bmmd Hall

Y

e

Brighton | | Clearview | T u‘“ﬂ"“{ Mianus

Y

B*-Tree before and after the insertion of “Clearview”
40

Insertion in B*-Tree (Cont.)

Splitting a leaf node

- take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first [n/2] in the original node, and
the rest in a new node

- let the new node be p, and let k be the least key value in p. Insert (k, p) in
the parent of the node being split

- If the parent is full, split it and propagate the split further up
Splitting of nodes proceeds upwards till a node that is not full is found

- Inthe worst case, the root node may be split, thus increasing the height
of the free by 1

41

Insertion in B+-Tree (Cont.)

Splitting a non-leaf node: when inserting (k, p) into an full internal
node N

- Copy N to an in-memory area M with space for n + 1 pointers and n keys

- Insert (k, p) into M

- Copy Py, K1, .., Kjn21-1. Pnj2) from M back into node N

- Copy Piy2141. Kinj21+1.-.Kn, Pyiq from M into the newly allocated node N’
- Insert (Kj,/2;, N') into parent N

Pl K]_ P2 e Pn_l K?’l'l Pn

42

Deletion in B*-Tree

Find the record to be deleted, and remove it from the main file and
from the bucket

Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty

If the node has too few entries due to the removal, and the entries
in the node and a sibling fit into a single node, then merge siblings

- Insert all the search-key values in the two nodes into a single node (the
one on the left), and delete the other node

- Delete the pair (K;_1, P;), where P; is the pointer to the deleted node,
from its parent, recursively using the above procedure

43

Examples of B*-Tree Deletion

Perryridge

1 I
n-=3
Downtown I Mianus Redwood

Before and \ \

after deleting prghon | | losrview | - [oowmion | [| ams| | [> [remrtr] | |- oo found il
“"Downtown”
Perryridge l
Mianus . g Redwood|
Beighton | | Clearview } Mianus 4+ [Perryndge > |Redwood | | Round Hil

Deleting "Downtown” causes merqging of under-full leaves
g ging

The removal of the leaf node containing "Downtown” did not result in its parent having too
little pointers. So the cascaded deletions stopped with the deleted leaf node's parent

44

Deletion in B*-Tree (Cont.)

If the node has too few entries due to the removal, and the entries
in the node and a sibling don't fit into a single node, then
redistribute pointers

- Redistribute the pointers between the node and a sibling such that both
have more than the minimum number of entries

- Update the corresponding search-key value in the parent of the node

The node deletions may cascade upwards till a node which has [n/2]
or more pointers is found.

If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root

45

Examples of B*-Tree Deletion (Cont.)

] 1]

Mianus) l&\lmull‘l
T

Deletion of "Perryridge” /

_—

Beighton | | Clearview (3 1| Mianus ”] Perryridgye . &dwud“&u\“hﬂ”

Brighton | | Clearview Q_/ Redwood | | Round Hilll

Node with "Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling

As a result "Perryridge” node's parent became underfull, and was merged with its sibling
(and an entry was deleted from their parent)

Root node then had only one child, and was deleted and its child became the new root node

46

Example of B*-tree Deletion (Cont.)

Deletion of “Perryridge” A/L"“““}"‘)L"‘“"‘“ Redwood |

Brighton | | Clearview | 4 [Downtowny | |4 | | Mianus L Perryridge| | 1~ vood Faundl-ﬁn
Mianus 5
' '
/\
/ hZT)
Brighton | | Clearview [IDuwntuwn -6 Mianus Redwood | [Round Hill
——

Parent of leaf containing Perryridge became underfull, and borrowed a pointer from
its left sibling

Search-key value in the parent’s parent changes as a result

47

B*-Tree File Organization

Index file degradation ({488 %) problem is solved by using B*-Tree
indices. Data file degradation problem is solved by using B*-Tree File
Organization (B3{44BR)

The leaf nodes in a B*-tree file organization store records, instead
of pointers

Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a non-leaf node

Leaf nodes are still required to be half full

Insertion and deletion are handled in the same way as the insertion
and deletion of entries in a B*-tree index

48

B*-Tree File Organization (Cont.)

(A4)] (BS) 1 (CD [(D9) [(EA | E7) | (G3)[(H3) ™

C ¥_ y

Good space utilization is important since records use more space than pointers.
To improve space utilization, involve more sibling nodes in redistribution

- Involving 2 siblings or more in redistribution to avoid split / merge where
possible

49

B-Tree Index Files

Similar to B*-tree, but B-tree allows search-key values to appear only
once, thus eliminating redundant storage of search keys

Search keys in non-leaf nodes appear nowhere else in the B-tree; an
additional pointer field for each search key in a non-leaf node is
included

Generalized B-tree leaf node

IPlIKl IPI I -5 [Pn-l IKn-l IP"]

(a) Leaf node

ey (e) & [P (B) & |- | Py [1Bd) | K | 2o |

(b) Non-leaf node

Nonleaf node - pointers B; are the bucket or file record pointers

50

B-Tree Index File

mwntown Redwood !
'

Downtown/ Redwood

bucket bucket
I Brighton I Clearview ah Mianus .Il’crryridgtw > ! Round Hill
Brighton Clearview Mianus Perryridge Round Hill
bucket bucket bucket bucket bucket

B-tree (above) and B*-tree (below) on same data

¥ bt
J Downtow Mi-mus vood
Brighton | | Clearview D’hﬂﬂ’ﬂ{ +> > |I'm:mdg > oo }la.mdl—ﬁl

o1

B-Tree Index Files (Cont.)

Advantages of B-Tree indices

- Use less tree nodes than B*-Tree

- Sometimes possible to find search-key value before reaching leaf node.
Disadvantages of B-Tree indices

- Only a small fraction of all search-key values are found early

- Non-leaf nodes are larger, so fan-out is reduced. Thus B-Trees typically
have greater depth than B*-Tree

- Insertion and deletion are more complicated than in B*-Trees
- Implementation is harder than B*-Trees

Typically, the advantages of B-Trees do not outweigh disadvantages

52

- Basic Concepts

* Ordered Indexing

+ B*-tree & B-tree Indices

@ Static & Dynamic Hashing

* Ordered Indexing vs. Hashing
- Index Definition in SQL

* Multiple-key Access

53

Static Hashing

A bucket is a unit of storage containing one or more records (a bucket
is typically a disk block)

In a hash file organization, we obtain the bucket of a record directly
from its search-key value using a hash function

Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B

Hash function is used to locate records for access, insertion as well as
deletion

Records with different search-key values may be mapped to the same
bucket; thus the entire bucket has to be searched sequentially to
locate a record

54

Example of Hash File Organization (Cont.)

Hash file organization of account file, using branch-name as key
(See figure in next slide)

- There are 10 buckets

* The binary representation of the i-th character is assumed to be
the integer i

» The hash function returns the sum of the binary representations of
the characters modulo 10

- Eg.
h(Perryridge) = 125 mod 10 = 5
h(Round Hill) = 113 mod 10 = 3
h(Brighton) = 93 mod 10 = 3

55

Example of Hash File Organization

bucket 0 bucket 5
A-102 | Perryridge 400

Hash file organization of account A301 | Perryridge | 900
file, using branch-name as key. A-218 | Perryridge [700
The binary representation of the i-th borket 1 DCEEt 6
character is assumed to be the
intfeger i
h(Perryridge) = 125 mod 10 = 5 S 2 b“:‘::: — -
h(Round Hill) = 113 mod 10 = 3 e
h(Brighton) = 93 mod 10 = 3
bucket 3 bucket 8
A-217 | Brighton 750 A-101 | Downtown 500
A-305 Round Hill 350 A-110 Downtown 600
bucket 4 bucket 9
A-222 | Redwood 700

56

Hash Functions

Worst hash function maps all search-key values to the same bucket

An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values

Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual
distribution of search-key values in the file

Typical hash functions perform computation on the internal binary
representation of the search-key

S7

Handling of Bucket Overflows

Bucket overflow can occur because of
- Insufficient buckets

- Skew in distribution of records. This can occur due to two reasons:
* multiple records have same search-key value
* chosen hash function produces non-uniform distribution of key values
Although the probability of bucket overflow can be reduced, it

cannot be eliminated; it is handled by using overflow buckets

58

Handling of Bucket Overflows (Cont.)

Overflow chaining - the overflow buckets of a given bucket are
chained together in a linked list

bucket 0

bucket 1

Y

e

overflow buckets for bucket 1

bucket 2

59

Hashing can be used not only for file organization, but also for index-
structure creation

A hash index organizes the search keys, with their associated record
pointers, into a hash file structure

Strictly speaking, hash indices are always secondary indices

- if the file itself is organized using hashing, a separate primary hash index
on it using the same search-key is unnecessary

- However, we use the term hash index to refer to both secondary index
structures and hash organized files

60

Example of Hash Index

bucket 0
A secondary hash index on the —
account file, for the search A215 ~»{ A-217 | Brighton | 750
A-305 = A-101 | Downtown §09
key account_number. LA Faiio Toousiows Te0
?,‘.'Afb'l%?i:)] _» A-215 | Mianus 700
The hash function computes e R —ejSIOR]| Rerrynsge [0
. . R0 et ~— A-201 | Perryridge | 900
account number modulo 7. [A217] |~ [A201] 1— »[A222 | Redwood | 700
A-102 ' ' » A-305 | Round Hill | 350
The hash index has 7 buckets, puckesd
each of size 2. One has a
overflow bucket. backet §
l
|
bucket 6

| A-222
l

61

Deficiencies of Static Hashing

In static hashing, function h maps search-key values to a fixed set
of B bucket addresses

Databases grow with time. If the initial number of buckets is too small,
performance will degrade due to oo much overflows

If file size at some point in the future is anticipated and choose the
number of buckets allocated accordingly, significant amount of space will
be wasted initially

If database shrinks, again space will be wasted

One option is periodic re-organization of the file with a new hash
function, but it is very expensive.

These problems can be avoided by using techniques that allow the
number of buckets to be modified dynamically

62

Dynamic Hashing

Good for database that grows and shrinks in size
- Allows the hash function to be modified dynamically

- Extendable hashing(RI# 7EE%%51) - one form of dynamic hashing

- Hash function generates values over a large range - typically b-bit integers, with b =
32 (then 232 hash values).

- At any time use only a prefix of the hash function fo index into a table of bucket
addresses.

- Let the length of the prefix be i bits, 0 <i < 32

- Bucket address table size = 2!, Initially i = 0

- Value of i grows and shrinks as the size of the database grows and shrinks.
- Multiple entries in the bucket address table may point to a bucket

- Thus, actual number of buckets is < 2!

* The number of buckets also changes dynamically due to coalescing and splitting

of buckets. 63

General Extendable Hash Structure

hash prefix

00
01--
10 - -
§

]

bucket 1
i]
bucket 2
i3

/1)

bucket address table

bucket 3

64

Use of Extendable Hash Structure

Each bucket j stores a value i;; all the entries that point to the same
bucket have the same values on the first i; bits.

To locate the bucket containing search-key K;:
- 1. Compute h(K;) = X

- 2. Use the first i high order bits of X as a displacement into bucket
address table, and follow the pointer to appropriate bucket

To insert a record with search-key value K;

- follow same procedure as look-up and locate the bucket, say j
- If there is room in the bucket j insert record in the bucket.

- Else the bucket must be split and insertion re-attempted (next slide.)
- Overflow buckets used instead in some cases (will see shortly)

65

Updates in Extendable Hash Structure

» To split a bucket j when inserting record with search-key value K;:
- If i > i; (more than one pointer to bucket j)

* allocate a new bucket z, and set ij and i, o the old i; + 1

 make the second half of the bucket address table entries pointing to j to point
to z

* remove and reinsert each record in bucket j

* recompute new bucket for K; and insert record in the bucket (further splitting
is required if the bucket is still full)

- If i =1i; (only one pointer to bucket j)
- increment i and double the size of the bucket address table.

- replace each entry in the table by two entries that point to the same bucket.

* recompute new bucket address table entry for K;

Now i > i; so use the first case above.
66

Updates in Extendable Hash Structure (Cont.)

When inserting a value, if the bucket is full after several splits (that
is, i reaches some limit b) create an overflow bucket instead of
splitting bucket entry table further.

To delete a key value,

- locate it in its bucket and remove it.

- The bucket itself can be removed if it becomes empty (with appropriate
updates to the bucket address table).

- Coalescing of buckets can be done (can coalesce only with a "buddy” bucket
if it is present)
- Decreasing bucket address table size is also possible

- Note: decreasing bucket address table size is an expensive operation and
should be done only if number of buckets becomes much smaller than the

size of the table
67

Use of Extendable Hash Structure: Example

branch-name h(branch-name)

Brighton 0010 11011111 10110010 1100 00110000
Downtown 10100011 1010 00001100 0110 10011111
Mianus 110001111110 11011011 1111 00111010

Perryridge 1111 0001 0010 01001001 0011 01101101
Redwood 0011 01011010 01101100 1001 11101011
Round Hill 1101 10000011 1111 1001 1100 00000001

hash prefix 0
0 _//.
bucket address table bucket 1

Initial Hash structure, bucket size = 2

68

Example (Cont.)

* Hash structure after insertion of one Brighton and two Downtown

records
- 1]
hash prefix
\ 1
bucket address table A-101 |[Downtown | 500
A-110 |[Downtown | 600
branch-name h(branch-name)
Brighton 0010 1101 1111 1011 0010 1100 0011 0000
Downtown 10100011 1010 00001100 0110 10011111
Mianus 110001111110 11011011 1111 00111010

Perryridge 1111 0001 0010 01001001 0011 01101101
Redwood 0011 01011010 01101100 1001 11101011
Round Hill 1101 10000011 1111 1001 1100 00000001

69

branch-name

Brighton
Downtown
Mianus
Perryridge
Redwood
Round Hill

Example (Cont.)

Hash structure after insertion of Mianus record

hash prefix

2 -_/.

bucket address table

1
A-217 | Brighton 750
2
A-101 | Downtown| 500
A-110 | Downtown| 600
2
A-215| Mianus 700

h(branch-name)

001011011111 10110010 1100 00110000
1010 0011 1010 0000 1100 0110 10011111
110001111110 11011011 1111 00111010
1111 0001 0010 01001001 0011 01101101
0011 01011010 01101100 1001 11101011
1101 10000011 1111 1001 1100 00000001

70

branch-name

Brighton
Downtown
Mianus
Perryridge
Redwood
Round Hill

Example (Cont.)

h(branch-name)

001011011111 10110010 1100 00110000
1010 0011 1010 00001100 0110 10011111
110001111110 11011011 1111 00111010
1111 0001 0010 01001001 0011 01101101
0011 0101 1010 01101100 1001 11101011
1101 10000011 1111 1001 1100 00000001

bucket address table

hash prefix

Perryridge

/~—»| A-217 |Brighton | 750
"
g/
b/
3 A-101 Downtown/| 500
/ A-110 [Downtown| 600
_—— A-215 |Mianus 700
\ [E
S A-102 Perryridge 400 | »~ A-218 [Perryridge | 700
A-201 900

Hash structure after insertion of three Perryridge records

71

Example (Cont.)

- Hash structure after insertion of Redwood and Round Hill records

branch-name

Brighton
Downtown
Mianus
Perryridge
Redwood
Round Hill

h(branch-name)

001011011111 10110010 1100 00110000
1010 0011 1010 00001100 0110 10011111
1100 01111110 11011011 1111 00111010
1111 0001 0010 01001001 0011 01101101
0011 0101 1010 01101100 1001 11101011
1101 10000011 1111 1001 1100 00000001

hash prefix

bucket address table

-2 A-217 [Brighton | 750
A-222 [Redwood | 700
2]
“> A-101 Downtown| 500
A-110 Downtown| 600
&)
——» A-215 |[Mianus | 700
A-305 [Round Hill| 350
3] 3]
| A-102|Perryridge| 400 | > A-218 |Perryridge| 700
| A-201 | Perryridge| 900 |

72

Extendable Hashing vs. Other Schemes

Benefits of extendable hashing:
- Hash performance does not degrade with growth of file
- Minimal space overhead

Disadvantages of extendable hashing
- Extra level of indirection to find desired record

- Bucket address table may itself become very big (larger than memory)
+ Need a tree structure to locate desired record in the structure !

- Changing size of bucket address table is an expensive operation

Linear hashing is an alternative mechanism which avoids these
disadvantages at the possible cost of more bucket overflows

73

- Basic Concepts

* Ordered Indexing

+ B*-tree & B-tree Indices

- Static & Dynamic Hashing

@ Ordered Indexing vs. Hashing
- Index Definition in SQL

* Multiple-key Access

74

What to Consider for Index Selection?

Cost of periodic re-organization
Frequency of insertions and deletions

Whether optimizing average access time at the expense of
worst-case access time

Expected type of queries

- Hashing is generally better at retrieving records having a
specified value of the key

- If range queries are common, ordered indices are preferred

75

- Basic Concepts

* Ordered Indexing

+ B*-tree & B-tree Indices

- Static & Dynamic Hashing

* Ordered Indexing vs. Hashing
& Index Definition in SQL

* Multiple-key Access

76

Index Definition in SQL

Create an index
create [UNIQUE] index <index-name> on <relation-name> (<attribute-list>)
E.g., create index b_index on branch(branch_name)

- Use create unique index to indirectly specify and enforce the condition
that the search key is a candidate key

* Not really required if SQL unique integrity constraint is supported
Drop an index
drop index <index-name>

77

- Basic Concepts

* Ordered Indexing

+ B*-tree & B-tree Indices

- Static & Dynamic Hashing

* Ordered Indexing vs. Hashing
- Index Definition in SQL

@ Multiple-key Access

78

Multiple-Key Access

Use multiple indices for certain types of queries

- Eg,

select account_number

from account

where branch_name = "Perryridge” and balance = 1000

Three possible strategies for processing query using indices on single attributes

- Use index on branch_name to find accounts with branch_name = "Perryridge”, test
balances of $1000; .

- Use index on balance to find accounts with balances of $1000; test branch_name =
"Perryridge”.

- Use branch_name index to find pointers to all records pertaining to the Perryridge
branch. Similarly use index on balance. Take intersection of both sets of pointers
obtained

79

Indices on Multiple Attributes

Suppose we have an index on combined search-key (branch_name,
balance)

With the where clause

where branch_name = "Perryridge” and balance = 1000

the index on the combined search-key will fetch only records that
satisfy both conditions

Can also efficiently handle
where branch_name = "Perryridge” and balance < 1000

But cannot efficiently handle

where branch-name < "Perryridge” and balance = 1000

May fetch many records that satisfy the first but not the second
condition, may lead to many I/Os

80

Grid Files

Structure used to speed up the processing of general multiple
search-key queries involving one or more comparison operators

The grid file has a single grid array and one linear scale for each
search-key attribute. The grid array has the number of dimensions
equal Yo number of search-key attributes

Multiple cells of grid array can point to same bucket

To find the bucket for a search-key value, locate the row and
column of its cell using the linear scales and follow pointer

81

Example Grid File for account

4 /
4 | Townsend , R - /T
3 | Perryridge | , |! | 1 A
2 | Mianus | S S (S SR I !
1 | Central I B bk il Bl It T
2] 1
Linear scale for : i : i E /-T'
branch-name 1 |! : ! i i — f-”:/
IR ISR ISR R dl M

ol HI

Grid Array 0 1 2 3 4 5 6
| 1k | 2k | 5K | 10K | 50K | 100K | Buckets
1 2 3 4 5 6

Linear scale for balance

82

Queries on a 6rid File

A grid file on two attributes A and B can handle queries of all following
forms with high efficiency

- (a1 <A< ay)

- (b1 < B <b,)

- (a;<A<a, AN by <B<b,)
Eg..

- toanswer (a; <A <a, A by <B < b,), use linear scales to find the
corresponding candidate grid array cells, and look up all the buckets
pointed to from those cells

83

6rid Files (Cont.)

During insertion, if a bucket becomes full, new bucket can be
created if more than one cell points to it

- Idea similar to extendable hashing, but on multiple dimensions

- If only one cell points to it, either an overflow bucket must be created
or the grid size must be increased

Linear scales must be chosen to uniformly distribute records
across cells.

- Oftherwise there will be too many overflow buckets.
Periodic re-organization to increase grid size will help
- But reorganization can be very expensive.
Space overhead of grid array can be high.

84

Bitmap Indices

Bitmap indices are a special type of index designed for efficient querying on
multiple keys

Records in a relation are assumed fto be humbered sequentially from:
- Given a number n, it must be easy to retfrieve record n
* Particularly easy if records are of fixed size

Applicable on attributes that take on a relatively small number of distinct
values

- E.g., gender, country, state, ...

- E.g., income-level (income broken up into a small number of levels such as
0-9999, 10000-19999, 20000-50000, 50000- infinity)

A bitmap is simply an array of bits

85

Bitmap Indices (Cont.)

* Inits simplest form, a bitmap index on an attribute has a bitmap
for each value of the attribute

- Bitmap has as many bits as records

- Ina bitmap for value v, the bit for a record is 1 if the record has the
value v for the attribute, and is O otherwise

record income | Bitmaps for gender Bitmaps for
number | name_|gender | address | -level m [10010 income-level
ridge L1 [10100
0 John | m |Perryridge| LI f 01101
1 Diana| f Brooklyn L2 L2 [01000
2 Mary | f |Jonestown | LI L3 [00001
3 Peter | m |Brooklyn L4 L4 (00010
E Kathy| f Perryridge| L3 L5 [00000

86

Bitmap Indices (Cont.)

Bitmap indices are useful for queries on multiple attributes
- not particularly useful for single attribute queries
Queries are answered using bitmap operations
- Intersection (and)
- Union (or)
- Complementation (not)
Each operation takes two bitmaps of the same size and applies the operation on
corresponding bits to get the result bitmap
- E.g., 100110 AND 110011 = 100010
100110 OR 110011 = 110111
NOT 100110 = 011001
- Males with income level L1: 10010 AND 10100 = 10000
* Can then retrieve required tuples
» Counting number of matching tuples is even faster

87

Bitmap Indices (Cont.)

Bitmap indices generally very small compared with relation size

- E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space used by
relation.

« If number of distinct attribute values is 8, bitmap is only 1% of relation size
Deletion needs to be handled properly
- Existence bitmap to note if there is a valid record at a record location
- Needed for complementation
* not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
Should keep bitmaps for all values, even null value
- To correctly handle SQL null semantics for NOT(A=v):
* intersect above result with (NOT bitmap-A-Null)

88

Assignments-Quiz

Q1: Construct a B*-tree from an empty tree. Each node can hold

four pointers

- The sequential values to be inserted are: 10, 7, 12, 5, 9, 15, 30, 23, 17,
26

- Then delete 9, 10, 15, respectively

- Please give the B* trees after each insertion and each deletion

Q2: Compare B*-tree and B-tree and describe their difference

89

HFIEFI (F5IHEX)

I REUEE

- OracleZB|454: BWZES|, {(EZ=E]
{OracleR5IA) ARHBEBHARIE

- IBM DB2Z5|4519: B*1Rf

- Microsoft SQL ServerZ3|45f3: B

FrIREUEE
- MySQLZ3S|: B-Tree(B+Tree). HashZ3|

- Postgre SQL, MySQL, Ingres r3, MaxDB, Firebird (InterBase), MongoDB,
SQLite, CUBRID, Cayley(Graph)

NoSQLEIEREE

- HBase, Cassandra, MongoDB, Redis
- OceanBase, openGauss, AXE6G, X-DB, A% ...

90

Research framework

LBS Smart city Navigation

Geo-tagging of reality || Location-based advertisement

r 1
| i
| |
I Retrieval Standard queries Advaqced I
: queries :
L e e e e o ——— |
:_ _______________________ . ________________________
I Indexing Spatial indexing Textual indexing

it f """"""""""""

: Data fusion
I
1
I

Objects extraction

e = i
i Spatio- ’u Spatlo- —u Spatlo- —U Spatio- :
I textual d textual d textual da textual d : o1

Spatio-textual objects

- 0=(l,d)
- o.l: spatial location, o.d: text description

POI: shop, bank, restaurant, museum, school, Geo-tagged web contents: news, images, videos,
hospital, etc. comments, micro-blogs

92

Spatio-textual indices

Spatial indices Textual indices

Inverted file

93

Spatial index: Grid index

Partition Tree structure

94

Spatial index: R-tree

R1 R2 R3 R4

of joojffo |/l o00
12002 |13

| 09 |
[.: IRL 02
IR3_____05J : |
|
————— |
o T T IR2 03l et ,
|06 | leo4 | L ==
| I I l
| o7 | : 08 I
LR _e, L — ==

95

Spatial index: R-tree

RS R5 | R6 R6
R1 IRl R2| R2 R3|[R3 R4| R4
0 0 0] 0 08 0 09 0 0]
1] 2 314 5 6 | 7
e 1
(]
I 09 I m o= ===z
I J| R5 IRL o2 |
I ol I h
R3 05 I I
== - = = = | | |
T |)
o= — — IIR2 03 ® 1ol II
08 llaos -
|
|

——————— 96

Spatial index: space filling curve (SFC)

Z-curve Hilbert curve

97

Textual index: inverted index

shop, shoes

cinema,

moBe

(D) middle, school

®cinema,

restaurant, dumplings

shop,
sh

(F) restaurant,
sushi

shop, bags

©

MOViE
Keywords Spatial-textual objects
shop A
shoes A
cinema B
movie B
C

restaurant

Spatio-textual objects

Inverted Index

Textual index: bitmap

ky |k, | ks | ky | ke
kikoks | 1 1 1 0o |0
kykoks | O 1 o |1 |1
kyk, 0 1 o |1 |0
keikykgks | 1 1 o |1 |1
aks 0 o 0 |1 |1

99

Textual index: signature file

Terms/documents Signature
k4 sig(k,)=0000000001
k. sig(k,)=0000000010
ks sig(k3)=1000000011
kyk, sig(k,k;)=sig(k,) Vv sig(k,)=0000000011
koks sig(k,k3)=sig(k;) V sig(k3;)=1000000011

100

ST index& TS index

- 6rid index + Inverted file
- ST: spatial textual index (grid index first)
- TS: textual spatial index (inverted file first)

. Italian - - - expensive

101

R*-tree-IF and IF-R*-tfree

- R*-tree + Inverted file
- R*-tree: a variant of R-tree

R*-Tree-lF IF-R*-Tree

Rs: | Ry | R> | Italian . .. expensive

...

Italian O3 \

Inverted file
Italian

R,: TT thzx
5

colfee coffee Oy
restaurant | 0 o, restaurant_ | Oy Oy RI: (o] O- R-: O3 | 04 | Og
expensive 0 02 expensive 03 04 Og = -

102

KR*-tree (Keyword R*-tree)

- R*-tree + Inverted file

- Each node is virtually augmented with the set of keywords that appear
in its subtree.

- Nodes are organized into inverted file

Keyword Tree nodes

Ttalian Ri, Ry, R3, Ry, R5, R
coffee Ri, Ry, Ry, R5, R,
restaurant Ri, Ry, R3, R4, Rs, Ry
Pizza R,, R4, Rs, Ry
Expensive R, R, R

103

- Inverted file + Filling curve

- Inverted file + Hilbert curve: inverted lists are laid out along a Hilbert
curve on disk.

- Inverted file + Z-curve: the objects in each inverted list are assigned
and ordered based on their spatial positions on the Z-curve.

Hilbert curve 104

IR?-tree

-+ Signature + R-tree

RG: [talian| coffee restaurant| pizza || ltalian| coffee restaurant| pizza

05 Og 07
R3: Italian| coffee jrestaurant| pizza R4: Italian| coffee restaurant| pizza ||| Italian| coffee restaurant| pizza

105

SKI (Spatial-Keyword Indexing)

Bitmap + R-tree

Super Node Rs: IR |R,

Leaf Node Ri:|010x| Ry:| 03|04 0g

Term Bitmap __I:[E-lll-e}r-lf-i--l--L-(-)-i-----ﬂ:--l--:f-(-)-ﬂ:--Q-j
‘coffee: 1011} 10101

106

+ R-tree + inverted bitmaps
- Variant of IR-tree

- Idea

- Consider the word frequency
- Recursively partition objects by keyword frequency

107

* Augment each node of R-tree with a summary of the text
content of the objects in the sub-tree

. L. Inverted file
Object descriptions 2: (R3, 4), (R4, 1)
o5 06 o7 09 b: (R4, 4)
a 4 0 1 3 R5 | Ré c: (R3, 4), (R4, 4)
b0 4 1 0 d: (R4, 1)
c 4 3 4 3 A
do 0o 1 0 R3 | R4 = = ===
o | 09 o|o
r= 5 617 1==
Inverted file Inverted file
a: (05, 4), (09, 3) a: (07, 1)
c: (05, 4), (09, 3) b: (06, 4), (07, 1)

c: (06, 3), (07, 4)
d:- (07 1)

108

S2I (spatial inverted index)

- Skewed distribution of keywords

|

|

Frequency

Keywords

+ S2I: R-tree + inverted file
- Build inverted index first
- Build ferm frequency-aware spatial index
* Frequent keywords: aggregated R-trees (aR-trees)
* Less frequent keywords: blocks

109

SKQs in Euclidean space

- Standard SKQs * Advanced SKQs

- Boolean range query — m-CK query
(BRQ) — Reverse query
- ST, TS — Moving query
* R*-Tree-IF, IF-R*-tree — Group query
* KR*-Tree — Direction-aware
- SKIF query
- Boolean kNN query — Region of interest
(BkQ) query
+ IR2-free — Why-not query
- SKI

— Similarity join query
- WIR-tree

- Top-k query (TkQ)
« IR-tree 110

Indices for SKQ in Euclidean space

Index Spatial index Textual Index Combination BkQ |TkQ |BRQ
ST Grid IF Spatial-first J
TS Grid IF Text-first J
IF-R*-Tree |R*-Tree IF Text-first A J
R*-Tree-IF |R*-Tree IF Spatial-first A J
SF2I SFC IF Spatial-first J
KR*-Tree R*-Tree IF Tightly combined | A J
IR2-Tree R-Tree Bitmap Tightly combined |/ A
IR-Tree R-Tree IF Tightly combined A J A
SKIF Grid IF Tightly combined J
SKT R-Tree Bitmap Spatial-first J

S2t R-Tree IF Text-first A J A
WIR-Tree R-Tree Inv. Bitmap Tightly combined |/ A
SFC-QUAD | SFC IF Tightly combined J

111

Basic Concepts

Ordered Indexing

B+-tree & B-tree Indices
Static & Dynamic Hashing
Ordered Indexing vs. Hashing
Index Definition in SQL
Multiple-key Access

112

Practice exercises: 14.3, 14 4
Exercises: 12.20

Submission DDL: 12:49pm, May 15

113

End of Lecture 8

114

