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Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 7 (A&pr. 17) - Ch12/13: Storage
. tems & structures
Part 1 Relational Databases 5YS , :
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 8 (Apr. 24) - Ch14: Indexing
(data model, relational algebra) - Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
- Lect. 4 (Mar. 13) - Ch4 & 5: Intermediate & - Lect. 9 (May 8) - Ch15: Query processing
Advanced SQL - Lect. 10 (May 15 ) - Ch16: Query
Par"r 2 Database Design optimization
Lect. 5 (Mar. 20) - Ch6: Database design . Par'T 5 Transaction Management
based on E-R model Lect. 11 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database _
design (Part T) lggg;rrgIZ (May 29) - Ch18: Concurrency
- Lect. 7 (Apr. 3) - Ch7: Relational datab
dzgign (%aE: II)) elational database - Lect. 13 (Jun. 5) - Ch19: Recovery system

Midterm exam: Apr. 10 - Lect. 14 (Jun. 5) - Course review

| Final exam: 13:00-15:00, Jun. 18




University Database

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | FEl Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Instructor table

00128
12345
19991
23121
44553
45678
54321
55739
70557
76543
76653
98765
98988

Zhang
Shankar
Brandt
Chavez
Peltier
Levy
Williams
Sanchez
Snow
Brown
Aoi
Bourikas
Tanaka

Comp. Sci.
Comp. Sci.
History
Finance
Physics
Physics
Comp. Sci.
Music
Physics
Comp. Sci.
Elec. Eng.
Elec. Eng.
Biology

ID name degt_name tot_cred

102
32
80

110
56
46
54
38

0
58
60
98

120

Student table




University Database

|

advisor

s_id
i_id

takes student
ID » D <
. name
course_id
—_ —{ dept_name
sec_id
tot_cred
semester
year
' grade
section course
course_id < course_id department
sec_id < title dept_name
semester < dept_name ™ buildi
year < ; credits ueamg
building time_slot budget
room_no time_slot_id
time_slot_id [] day
start_time
end_time
prereq instructor
classroom course id D
building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
L course_id
L sec_id
semester

year




E-R Diagram for a Banking Enterprise
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The Banking Schema

branch = (branch_name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee_id, employee_name, telephone_number, start_date)

dependent_name = (employee_id, dname) (derived from a multivalued attribute)

account_branch = (account _number, branch_name)
Joan_branch = (loan_number, branch_name)

cust_banker = (customer_id, employee_id, type)
borrower = (customer _id, loan number)

depositor = (customer_id, account _number, access_date)
works_for = (worker_employee id, manager_employee_id)

payment =(loan_number payment_number payment_date,payment_amount)

savings_account = (account _number, interest_rate)
checking_account = (account_number, overdraft_amount)




Features of Good Relational Designs

Functional Dependency (e&&%{&EH)

- Functional dependency: why and what?

- Closure of functional dependency (REUKERIAR)
- Closure of attribute sets (BEHEFE)

- Canonical cover (BR/INEBE)

- Lossless-join decomposition (FoiRiEEEDf#)

- Dependency preservation ({KFEi{RTF)
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Larger Relation Schema/SE ARSI

inst_dept (ID, name, salary, dept_name, building, budget)
- Redundant (7Ts%) : dept_name, building, budget
» Fudan's School of CS has about 200 faculty members and staffs
- Inconsistent (4~—%{) : dept_name, building, budget
- Insert failure: cannot insert a tuple without ID, name, salary
Functional dependency is needed
dept_name — budget
Decomposition
inst_dept
* instructor(ID, name, salary, dept_name)
- department(dept_name, building, budget)



Smaller Relation Schema/BE/MEIIER,

| ID | name | street | city | salary |

57766 | Kim | Main Perryridge | 75000
98776 | Kim | North | Hampton 67000

employee
A
ID name name street| city | salary
57766 | Kim Kim | Main | Perryridge | 75000
98776 | Kim Kim | North | Hampton 67000
\ natural join /
| ID | name | street | city | salary

More tuples mean lossy decompositions

57766 | Kim__| Main_| Perryridge | 75000
57766 | Kim | North | Hampton 67000
98776 | Kim | Main | Perryridge | 75000
98776 | Kim North | Hampton 67000

10




Good Relation Schema

RDB design is to find a "good"” collection of schemas. A bad
design may lead to

- Repetition of information

- Inability to represent certain information
- e.g. representing a new department without faculty

Design goals
- Avoid redundant data
- Ensure that relationships among attributes are represented
- Ensuring no information loss

- Facilitate the checking of updates for violation of database
integrity constraints

11



Features of Good Relational Designs
< Functional Dependency (E&&{&EH)
» Functional dependency: why and what?
- Closure of functional dependency (EREKERIAEL)
- Closure of attribute sets (BHEFE)

- Canonical cover (R/IN\EBE)

Lossless-join decomposition (FiR$EZD#E)

- Dependency preservation ({#<Ei{RTF)

12



+ Consider the relation schema:
lending_schema = (branch_name, branch_city, assets, customer_name,

loan_number, amount)

Redundancy

branch-name

branch-city

assets

customer-
name

loan-
number

amount

Downtown
Redwood

Perryridge
Downtown

Brooklyn
Palo Alto
Horseneck
Brooklyn

9000000
2100000
1700000
9000000

Jones
Smith
Hayes
Jackson

L-17
L-23
L-15
L-14

1000
2000
1500
1500

- Data for branch_name, branch_city, and assets are repeated for each
loan that a branch makes

- Waste space, complicate updating, and introduce possibility of
inconsistency of assets value

»  Null values
- Cannot store information about a branch if no loans exist

- Can use null values, but they are difficult o handle 13



Decompose the relation schema lending_schema into:
branch_schema = (branch_name, branch_city, assets)
loan_info_schema = (customer_name, loan_number, branch_name, amount)

All attributes of an original schema R must appear in the
decomposition (R4, R>):
R = R1 U Rz

Lossless-join decomposition (FoiRiEE 2 %)
- For all possible relations r on schema R: 1 = IR (1) > M py (1)

14



Example of Non Lossless-Join Decomposition

Decomposition of R = (A, B, C)

- R1 = (AIC)I RZ = (B,C)

™™ R R >

== N = O =N

R

lossy

myc(r) g c(r) M, (1)

A C B C A B

a 1 1 1 a 1

B 1 2 1 a 2
B 1

D™ R R >

Njf= N = ©

l—‘l—‘l—‘l—‘ﬁ

Iac (r) x Ilgc (r)

™ R R

= N = © =

lossless

[Tag (r) X Ilgc (1)

C
1
1
1

Ri = (A;B) RZ = (B;C)?

15



Goal - Devise a Theory for the Following

Decide whether a particular relation R is in good form

In the case that R is not in "good” form, decompose it into a set of

relations {Ry, R, ..., R,,;} such that

- each relation is in good form
- the decomposition is a lossless-join decomposition (FTIREED[E)
- the decomposition is dependency-preservation ({FiFER)

Our theory is based on:
- functional dependencies (ER&N{#E)
- multi-valued dependencies

16



Functional Dependencies (EREL{#&#HR)

Constraints on the set of legal relations

Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes

- Or aset of attributes are determined by another set of attributes

A functional dependency is a generalization of the notion of a key

- Or key is a specific form of functional dependency

17



Functional Dependencies (Cont.)

Let R be a relation schema, « S Rand B S R

The functional dependency a — B holds on R

- for ANY legal relations r(R), whenever any two tuples t; and t, of r
agree on the attributes a, they also agree on the attributes g

- e, tila] = t;[a] = t1[B] = t;[P]
Eg..

- Consider r(4, B) with the following instance of r

~N O b

1
1
3

- the 4 — B does NOT hold, but B —» A does hold

18



Functional Dependencies (Cont.)

e K is asuperkey for relation schema R iff K - R

e K is acandidate key for R iff
- K- R,and
- NoacK,a—-R
FDs allow us to express constraints that cannot be expressed using

superkeys. Consider the schema:
loan_info_schema = (customer_name, loan_number, branch_name, amount)

We expect this set of FDs to hold:

loan_number — amount
loan _number — branch_name

but would not expect the following to hold:
loan_number — customer_name

19



Applications of Functional Dependencies

We use functional dependencies to:

- test relations to see if they are legal under a given set of functional

dependencies,

- specify constraints on the set of legal relations

Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does not
holds on all legal instances.

- For example, a specific instance of loan_schema may satisfy

loan_number — customer_name
20



Functional Dependencies (Cont.)

A functional dependency is trivial(SEFLEY) if it is satisfied by all

instances of a relation, e.qg.,

customer_name, loan_number — customer_name
customer_name — customer_name

- Ingeneral, a - B is trivial if B c a

Full dependency and partially dependency

- B is fully dependent on «a, if there is no proper subset a’ of a such

that a’ - B. Otherwise, B is partially dependent on «

21



Features of Good Relational Designs
< Functional Dependency (EREU#KiE)
- Functional dependency: why and what?
> Closure of functional dependency (EREUKFRIZIE)
- Closure of attribute sets (JBHETELD)
- Canonical cover (F/INBE)
- Lossless-join decomposition (FoiRiEEEDf#)

- Dependency preservation ({KFEi{RTF)

22



Closure of a Set of Functional Dependencies

Given a set F of FDs, there are some other FDs that are logically
implied (Z455i#) by F
- Eg., if A-> Band B - C, then we can infer that A - C
- The set of all FDs logically implied by F is the closure (A1) of F
- We denote the closure of F by F*
Can find all of F* by applying Armstrong's Axiom (2IE) :
- If pca,thena— B (reflexivity:BR{#E)
- If a > B,thenya->yB  (augmentation:}&I 1)
- Ifa->B,and B> y,thena -y (transitivity (&iEE)
These rules are (IEFfAE5EES)
- sound (generate only FDs that actually hold) and
- complete (generate all FDs that hold).

23



Closure of Functional Dependencies (Cont.)

We can further simplify manual computation of F* by using the
following additional rules.
- If a - B holds and a - y holds, then a —» By holds (union: SFFN)
- If a — By holds, then a — B holds and a — y holds (decomposition: 93f#
F )
- If a —» B holds and yB — & holds, then ay — & holds (pseudotransitivity
: fRf&iEEEn)

The above rules can be inferred from Armstrong's axioms.

24



e R=(A4,BCGH,I) F={A—)B,A—)C,CG—)H,CG—)I,B—)H}
Some members of F*
- A-H
- by transitivity fromA - Band B - H
- AG -1

by augmenting A - C with G to get AG — CG and then transitivity
with CG - I

- CG - HI
« from CG — H and CG — I: union rule can be inferred from
- definition of functional dependencies, or

- augmentation of CG — I o infer CG — CGI, augmentation of
CG - H to infer CGI - HI, and then transitivity

25



Procedure for Computing F*

To compute the closure of a set of FDs F:
Ft=F

apply reflexivity (B fE) /* Generates all trivial dependencies */
repeat
for each FD fin F*
apply augmentation (34 4£) rules on f
add the resulting FDs to F*
for each pair of FDs f; and f, in F*
if f1 and f, can be combined using transitivity (f5i#%£)

then add the resulting FD to F*
until F* does not change any further

NOTE: We will see an alternative procedure for this task later
26



R(X,Y,Z), F={X->Y,Y->Z}, F*?

Fr={

X+bD, |YH4D, | Z) P, | XY D, @ ®, YZ— W» D,
XX, |YY, | Z$Z, | XYX, KZ4X, YZ- XYZHX,
XY, |Y+Z, XYY, XKZY, VY XYZ+Y,
X-+Z, |Y+HYZ, XYHZ, XZZ, VY. 17,
X—+XY, XYHXY, Z—XY, XY,
X—+HXZ, XYYz, Z—-XZ, YZ,
X-+YZ, XYHXZ, ZYZ, XZ,
X—»X‘/Z,k_‘ X’(:XJYZ, XZ-XYZ, XYZ—>X|! Z}

F={X—AL, ..., X—An}, to compute F*is a NP problem 7



Features of Good Relational Designs
< Functional Dependency (EREU#KiE)
- Functional dependency: why and what?
- Closure of functional dependency (REUKERIAR)
> Closure of attribute sets (EE&EFAE)

- Canonical cover (g/NEEH)
- Lossless-join decomposition (FoiRiEEEDf#)

- Dependency preservation ({KFEi{RTF)

28



Closure of Attribute Sets

Given a set of attributes a, define the closure of a under F (denoted
by a™) as the set of attributes that are functionally determined by «
under F:

a—-pBisinFrepcat

Algorithm to compute a™:
resultiza;
while (changes to result) do
foreach p -y in F do
begin
if f Sresult, then result:=result U y
end

29



Example of Attribute Set Closure

Given R<U F>, U ={A,B,C,D,E}, F-{AB—C,B—D,C—E EC—B,AC—B};
Compute: (AB)*,(AC)s*,(EC)s

X0)={A, B};

First loop:

X: for each FD in F, find FDs that the left hand side(LHS) is A,B or AB, then
AB—C,B—D, and X(1={A,B}u{C,D}={A,B,C,D};

Second loop:

XMzX0), find FDs that the left hand side is the subset of {ABCD}, then
AB—C,B—D,C—E,AC—B, and X@=XMu{c,D,E B}={A,B,C,D E}:

X@=U, all attributes are in X(), the attribute set closure computing is end.
So (AB)* = {A,B,C,D,E}.

(AC)er =222  (EC)er =222

(AC)={AB,CD,E}; (EC)+={B,CD,E}

Note: WZEHIERFMBBTHIFIR, WITHEED BRiEMG, FMHR?

30



Example of Attribute Set Closure

e R=(ABCGHI),F={A-BA—-C(CC(CG—-HCG—-I,B— H}
Calculate (AG)™
- result = AG
- result = ABCG (A—- Cand A - B)
- result = ABCGH (CG - H and CG < ABCG)
- result = ABCGHI =R (CG -» I and CG < ABCGH)
Is AG a candidate key?

- Is AG a superkey?
* Does AG - R? == Is (AG)"2 R
- Is any subset of AG a superkey?
- DoesA—-> R? == Is (A)*2 R (A)*=ABCH
- Does G — R? == Is (G)'2 R 6)'=6 (MEREIEA. 6

31



Applications of Attribute Closure

Testing for superkey

Testing functional dependencies

- To check if a functional dependency a — B holds (or, in other words,
is in F*), just check if B c a*

- Compute a* by using attribute closure, then check if it contains B
- A simple and cheap test

Computing closure of F

- For each y € R, we find the closure y*, and for each S € y*, we
output a functional dependency y - S

32



Features of Good Relational Designs
< Functional Dependency (EREU#KiE)
- Functional dependency: why and what?
- Closure of functional dependency (REUKERIAR)
- Closure of attribute sets (JBHETELD)
> Canonical cover (R/INEBE)
- Lossless-join decomposition (FoiRiEEEDf#)

- Dependency preservation ({KFEi{RTF)

33



Canonical Cover (IEN|BE/R/IINEE)

Sets of FDs may have redundant FDs that can be inferred from
the others

- Eg.,A—- Cisredundantin. {A-B,B—-C,A- C}
- Parts of a FD may be redundant

- E.g.,onRHS: {4 - B, B - C, A- CD} can be simplified to
{A-B,B-(C,A- D}

+ E.g.,onLHS: {A - B, B - C, AC - D} can be simplified to
{A-B,B- C,A- D}

Intuitively, a canonical cover of F is a "minimal” set of FDs
equivalent to F, having no redundant FDs or redundant parts of FDs

34



Extraneous Attributes (FoXE L)

Consider a set F of FDsand the FDa - B inF

- Attribute A is extraneous (F5%AY) in a (ZZM) if A € a and F logically
implies (F — {a - B}) U {(a — A) - B}
- Attribute A is extraneous in g (&{ll) if A € B and the set of FDs
(F —{a - B}) U{(a - (B — A)} logically implies F
Note: implication in the opposite direction is trivial in each of the
cases above
Example: Given F = {A - C,AB - C}

- B is extraneous in AB — C because {A - C,AB — C} logically implies A —
C (i.e., the result of dropping B from AB — C)

Example: Given F = {A - C,AB — CD}
- C is extraneous in AB — CD, it can be inferred from = {A - C,AB — D}

35



Testing if an Attribute is Extraneous

Consider a set Fof FDs and a—p in F.

To test if attribute Aca is extraneous in o (Z£MILHS)
1. compute ({a} - A)* using the dependencies in F

2. check that ({a} - A)" contains B; if it does, A is extraneous
To test if attribute A<p is extraneous in B (G IRHS)

1. compute o using only the dependencies in F'= (F - {a—B}) U
{a—>(B - A)},

2. check that o* contains A, if it does, A is extraneous

36



Canonical Cover

A canonical cover for F is a set of FDs F, such that
- F logically implies all dependencies in F, and

~ F_ logically implies all dependencies in F, and

- No FD in E. contains an extraneous attribute, and

- Each left side of FD in E, is unique, i.e., there are no two FDs a;, - f;
Clnd a, — ,82 SUCh ThGT a, = a,

To compute a canonical cover for F:
repeat
use the union rule to replace any dependencies in F
a; = fy and ay - B, withay - By f;
find a FO a« - B with an extraneous attr. either ina or in B

If an extraneous attr. is found, delete it froma - B
until F does not change

37



Example of Computing a Canonical Cover
R=

(A, B C) F={A->BC B~>C, A>B, AB->C}, Fc=?
Combine A—ABCand A— B into A—BC

- Setis now {A>BC, B>C, AB—>C)
A is extraneous in AB—>C

* Check if the result of deleting A from AB—Cis implied by the
other dependencies 8->C

- Set is now {A—>BC, B— )
Cis extraneous in A—>BC

* Check if A—>Cis logically implied by A— A2 and the other
dependencies B->C

The canonical cover is: Fc= {A—>B8, B>}

* A canonical cover might not be unique. For {4 - C,B - AC,C > AB}, F. =
fA-CB—->CC—->AB}orF,={A—> C,B—> AC,C - B}

38



Example of Computing a Canonical Cover

R<U,F>, U={X.Y,Z,W},

F={W=Y YW X>WY,Z-WY XZ—W}, F.2
(1) F={W=Y., YW X>WY,Z-WY XZ—W)
(2) For RHS, X—>WY => X—Y; Z-WWa> Z—Y

F={W=Y YW, X5V, Z-Y XZ-W}
(3) For LHS, XA-W => X—W

F={WoY, YW, X—Y, Z-Y X—W)

(4) Delete redundant FDs,F={W—Y YW XY, Z—Y, X—>W}
Fc = {(W-Y, YW X-Y,Z-Y} or Fc = {W—Y,Y>W X->W,Z—W}

39



Example of Computing a Canonical Cover

F={A>B, B>A, B>C, A~C, C—A}
F..= {A—B, B—>C, C—A}
F.,= {A—B, B>A, A-C, C—A}
F..» F., areall canonical covers for F

So, a canonical cover might not be unique

40



More Examples

R<UIF>I U‘:{A,B,C,D,E,G},
F={AB—C, C—A, BC—D, ACD—B, D—EG, BE—C, C6—BD, CE—AG},
Compute (AB)*, (AC)*, (CD)*, Fc

(AB)={A,B,C,D,E,G}=U, (AC)*? (CD)*?

(AC)={A C}, (cD)={AB,CDEG}=VU

Fc={AB—C,C—A BC—-D,(D—B,b—E D—GBE—-C,C6—D,CE-E}
(c6)={AB,.CD,EG}V, (CE)={AB,CD,EG)UV

41



Find Candidate Keys

* For R(A4,A,, ...,A,) and FDs in F, all attributes can be
classified into 4 types:

- L: only exists in LHS
- R: only exists in RHS
- N: not exists in either LHS or RHS

- LR: exists in LHS and RHS both

42



Find Candidate Keys (Cont.)

Algorithm: find candidate keys for R
- Input: Randits FDs set F

Output: All candidate keys for R

(1) Classify all attributes into two parts: X represents for L and N types, Y for LR type

(2) Compute X*, if X* contains all attributes of R, then X is the only candidate key for
R, then goes to (5); otherwise goes to (3)

(3) Take attribute A from Y, compute (XA)*. If (XA)* contains all attributes of R, then
XA is a candidate key for R. Then take another attribute from Y, continue with the
process until all attributes in Y are tested

(4) If all candidate keys are found in step (3), then goes to (5); otherwise take 2 or 3 or
more attributes from Y, and compute the corresponding attribute closure (the attribute
group should not contain any candidate keys already found), till the attribute closure
contains all attributes of R

(5) Finished, and output the result
43



Find Candidate Keys (Cont.)

Given R<U, F>, U={X, Y, Z, W}, and F={W-Y, Y-W, X->WY,
Z—>WY, XZ—Wj}, find all candidate keys of R

a) F.={W=Y,Y->W, XY, Z-Y}
b) XLN: XL= XZ, yLR: YW

c) Xint={X,Y,ZW}=U, so (XZ) is the only candidate key of R

44



Find Candidate Keys (Cont.)

Given R<U,F>, U={A,B,C,D}, and F={AB—C, C—D, D—A}, find all
candidate keys of R

a) F.={AB—C, C—D, D—A}
b) XLN: XL: B, yLR: ACD
c) Xinv={B}z U

d) (AB)'= {ABCD}= U, (BC)*= {ABCD} = U, (BD)*= {ABCD} = U, then (AB)
. (BC). (BD) are all candidate keys of R

45



Find Candidate Keys (Cont.)

+  Given R<U,F>, U={OBISQD}, F={S—D, b—S, I-B, B—I, B—~0, O—B},
find all candidate keys of R
M F={?}
()X n=7, Y7
(3) Xn={? }=orzU?
4) ..
candidate keys of R ?

(QSO). (QDO). (QSB). (QDB). (QSI). (QDI)

46



Find Candidate Keys (Cont.)

- Given R<U F>, U={OBISQD}, F={s—D, D—S, I-B, B—I, B—~0, O—B},
find all candidate keys of R
(1) Fc={5—D, D—S, I-B, B—I, B—0, O—B}=F
(2) XLN: Q, yLR: SDBIO
(3) Xint={Q} zU
(4)(QS)={QSD}.(QD)={QSD}.(QB)={QBIO},(QI)={QBIO}(QO)={QBIO}.
zU
(QSO). (QSB)~ (QSI) (QSD) -~ (QDO) (QDB). (QDI) . (QDS)"
(QBO)"+ (QBI) (QBS) (QBD)'+ (QIO) (QIB)~ (QSI) (QID) ~
(QOB)*\ (QOI)» (QOS)~ (QOD)*
candidate keys of R:
(QSO). (QSB). (QSI). (QDO). (QDB). (QDI)

47



Features of Good Relational Designs
= Functional Dependency (ERZS{&ii)
- Functional dependency: why and what?
- Closure of functional dependency (EREUKTRIAIE)
- Closure of attribute sets (EBHEFR)
- Canonical cover (R/IN\BE)
> Lossless-join decomposition (FoiR$EED#E)
- Dependency preservation ({KFEi{RTF)
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Goals of Normalization

Decide whether a particular relation Ris in good form

In the case that Ris not in "good” form, decompose it into a set
of relations {R,,R,,...,R,} such that

- each relation is in good form
- the decomposition is a lossless-join decomposition
- the decomposition is dependency-preservation

Our theory is based on:

- functional dependencies
- Multi-valued dependencies
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Decompose the relation schema Lending_schema into:
Branch_schema = (branch_name, branch_city,assets)
Loan_info_schema = (customer_name, loan_number,
branch_name, amount)
All attributes of an original schema (R) must appear in the
decomposition (R;, R,):
R = R1 O RZ
Lossless-join decomposition.For all possible relations 7 on schema R
r=Ilg1 (r) cMr2 (7)
Theorem: A decomposition of R into R and R; is lossless join iff at
least one of the following dependencies is in F*:
= Rl M Rz —> R1
= Rl M Rz —> Rz
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Example of Non Lossless-Join Decomposition

Decompositionof R=(A,B,C), F={A— C, B— C)

R1 = (A,C), R2 = (B,C)
lossy

== N = O =N

C
1
1
1

™™ R R >

RRNR > R ?
R1ﬁR2—)R2?

W

R;=(AB) R, =(BC)?

lossless

myc(r) g c(r) M, (1)
A C B C A B
a 1 1 1 a
B 1 2 1 a 2

B 1

D™ R R >

Njf= N = ©

|—l|—l|—l|—lh

Iac (r) x Ilgc (r)

™ R R

_ N = O =

Rlﬁpz—)Rz

[Tag (r) X Ilgc (1)

C
1
1
1
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R=(A, B C)
F={A—> B, B— C)

- Can be decomposed in two different ways
R =(A B), R =(B <)
- Lossless-join decomposition:
RiNR ={Band B—> BC
- Dependency preserving
Ri=(A,B), R =(A C)
- Lossless-join decomposition:
RiNR ={Atand A > AB

- Not dependency preserving
(cannot check B— Cwithout computing R; t&,)
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O Given R<U,F>, U={A,B,C,D,E}, F={AB—C, C—D, D—E},and a
decomposition p of R into:
R1(A,B,C), R2(C,D), R3(D,E).
p is a lossless-join decomposition or a lossy one?
- (AB,C,D,E)->(A,B,C,D)+(D,E) (LID)

- (ABCD)->(ABC)+(C, D)(JID)
- pislLJID
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Test for Lossless-join Decomposition

Input: R< U,F >, U = {A,A,, ..., A,}, F, a decomposition of R: p = {R; <
UliFl >,R2 < Uz,FZ >, ...,Rk < Uk'Fk >}
Output: p is a lossless-join decomposition or a lossy one

(1) Construct a table L with k rows and n columns, and each column corresponds to an
attribute 4;(1 < j < n), and each row corresponds to a schema R;(1 < i < k). If A;isin

R; (Aj € R;), then fill the form with a; at L;;, otherwise fill it with b;;.

(2) Regard table L as a relation on schema R, and check for each FD in F whether the
FD is satisfied or not. If the FD is not satisfied, rewrite the table as:

- ForaFDinF: XV, if t[x1]=1[x2], and t[yl]#t[y2], then rewrite y with the same
value;

* If thereisan a; fory, then anothery is set to a;;
* If there is not an a;, then use one b;; to replace the othery:
- Till no changes occur on form L

(3) If there is a row of all a; (i.e. a;a; ... a,), then p is a lossless-join decomposition.
Otherwise, p is a lossy decomposition. 54



Given R<U,F>, U={A,B,C,D,E}, F={AB—C, C—D, D—E}, and a
decomposition p of R into: R1(A, B, C), R2(C, D), R3(D,E).pisa
lossless-join decomposition or a lossy one?

(1) First, construct a table as:

R1(A,B,C) a4 a, a3 bia bis
R2(C,D) b,y | by, | a3 as | bus
R3(D,E) b31 b32 b33 as Qs
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Example (cont.)

(2) For AB—C in F, no change occurs; for C—D, rewrite b4 with a4,
and for D—E, rewrite bys and b,: as az. Then we have a row as: a4,
a,, az, a,, as. The decomposition of R into R1, R2, and R3 is a
lossless-join one.

R1(A,B,C)

m I \

R2(C,D)
R3(D,E)
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Example of Non Lossless-Join Decomposition

Decompositionof R=(A,B,C), F={A— C, B— C)

R1 = (A,C), R2 = (B,C)
lossy

== N = O =N

C
1
1
1

™™ R R >

RRNR > R ?
R1ﬁR2—)R2?

W

R;=(AB) R, =(BC)?

lossless

myc(r) g c(r) M, (1)
A C B C A B
a 1 1 1 a
B 1 2 1 a 2

B 1

D™ R R >

Njf= N = ©

|—l|—l|—l|—lh

Iac (r) x Ilgc (r)

™ R R

_ N = O =

Rlﬁpz—)Rz

[Tag (r) X Ilgc (1)

C
1
1
1
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R=(A, B C)
F={A—> B, B— C)

- Can be decomposed in two different ways
R =(A B), R =(B <)
- Lossless-join decomposition:
RiNR ={Band B—> BC
- Dependency preserving
Ri=(A,B), R =(A C)
- Lossless-join decomposition:
RiNR ={Atand A > AB

- Not dependency preserving
(cannot check B— Cwithout computing R; t&,)
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Features of Good Relational Designs
< Functional Dependency (EREU#KiE)
- Functional dependency: why and what?
- Closure of functional dependency (REUKERIAR)
- Closure of attribute sets (JBHETELD)
- Canonical cover (F/INBE)

- Lossless-join decomposition (FoiRiEEEDf#)

> Dependency preservation (#KEMRET)
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Normalization using Functional Dependencies

When we decompose a relation schema R with a set of FDs F into
R4, R;,.., R;, we want
- Lossless-join decomposition: Otherwise decomposition would result in
information loss
- No redundancy: The relations R; preferably should be in either BCNF
or 3NF
- Dependency preservation: Let F; be the subset of dependencies F*
that include only attributes in R;
e (F{UF,U---UF,)"=F"*

* Otherwise, checking updates for violation of FDs may require computing
joins, which is expensive
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Testing for Dependency Preservation

To check if FD a — B is preserved in a decomposition of R info R4,
R,,..., R,,, we apply the following simplified test

result = a
while (changes to result) do
for each R; in the decomposition
t = (/"e.S'U/f'ﬂ Rl)+ N Ri
result = result Ut
- If result contains all attributes in B, then the functional dependency a — B is
preserved
We apply the test on all dependencies in F to check if a decomposition
is dependency preserving

This procedure takes polynomial time, instead of the exponential time
required to compute F*and (F{ UF, U U F,)"
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e R=(ABC),F={A-> B,B - (}
- Can be decomposed in two different ways

¢ Rl — (A'B): RZ — (B, C)
- Lossless-join decomposition: Ry N R, = {B}and B - C
- A-B, B->C, TestA>(C?
- Dependency preserving

¢ Rl — (A'B): RZ — (A, C)
- Lossless-join decomposition: Ry N R, = {A}and A - B
- A->B, A-C,check B> C

- Not dependency preserving
(cannot check B — C without computing Ry < R;)
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End of Lecture 6
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