
1复旦大学计算机科学技术学院

Lecture 6: Relational Database Design Theory (1)
第6讲：关系数据库设计理论 (1)

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate &

Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 7 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 8 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no classes
– Lect. 9 (May 8) - Ch15: Query processing
– Lect. 10 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 11 (May 22) - Ch17: Transactions
– Lect. 12 (May 29) - Ch18: Concurrency

control
– Lect. 13 (Jun. 5) - Ch19: Recovery system
– Lect. 14 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

University Database

Instructor table Student table

4

University Database

5

E-R Diagram for a Banking Enterprise

multi-valued
attribute

derived attribute

Weak entity sets

account-branch

6

The Banking Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• cust_banker = (customer_id, employee_id, type)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)

7

Outline
• Features of Good Relational Designs

• Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

8

Outline
F Features of Good Relational Designs

• Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

9

Larger Relation Schema/更大的模式
• inst_dept (ID, name, salary, dept_name, building, budget)

– Redundant（冗余）: dept_name, building, budget
• Fudan’s School of CS has about 200 faculty members and staffs

– Inconsistent（不一致）: dept_name, building, budget
– Insert failure: cannot insert a tuple without ID, name, salary

• Functional dependency is needed
dept_name → budget

• Decomposition
inst_dept

• instructor(ID, name, salary, dept_name)
• department(dept_name, building, budget)

10

Smaller Relation Schema/更小的模式

More tuples mean lossy decompositions

11

Good Relation Schema

• RDB design is to find a “good” collection of schemas. A bad
design may lead to
– Repetition of information
– Inability to represent certain information

• e.g. representing a new department without faculty
•

• Design goals
– Avoid redundant data
– Ensure that relationships among attributes are represented
– Ensuring no information loss
– Facilitate the checking of updates for violation of database

integrity constraints

12

Outline
• Features of Good Relational Designs

F Functional Dependency（函数依赖）

Ø Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

13

Example
• Consider the relation schema:

lending_schema = (branch_name, branch_city, assets, customer_name,
loan_number, amount)

• Redundancy
– Data for branch_name, branch_city, and assets are repeated for each

loan that a branch makes
– Waste space, complicate updating, and introduce possibility of

inconsistency of assets value
• Null values

– Cannot store information about a branch if no loans exist
– Can use null values, but they are difficult to handle

14

Decomposition
• Decompose the relation schema lending_schema into:

branch_schema = (branch_name, branch_city, assets)
loan_info_schema = (customer_name, loan_number, branch_name, amount)

• All attributes of an original schema 𝑹 must appear in the
decomposition (𝑹𝟏, 𝑹𝟐):

𝑹 = 𝑹𝟏 ∪ 𝑹𝟐

• Lossless-join decomposition (无损连接分解):
– For all possible relations 𝒓 on schema 𝑹: 𝒓 = 𝜫𝑹𝟏(𝒓) ⋈ 𝜫𝑹𝟐(𝒓)

15

Example of Non Lossless-Join Decomposition

• Decomposition of R = (A, B, C)
– R1 = (A,C), R2 = (B,C)

A B C
a 1 1
a 2 1
b 1 1

A C
a 1
b 1

B C
1 1
2 1

𝒓 𝜫𝑨,𝑪(𝒓) 𝜫𝑩,𝑪(𝒓)

A B C
a 1 1
a 2 1
b 1 1
b 2 1

ÕAC (r) ÕBC (r)

R1 = (A,B) R2 = (B,C)？

A B
a
a

1
2

b 1

𝜫𝑨,𝑩(𝒓)

ÕAB (r) ÕBC (r)

lossy

A B C
a 1 1
a 2 1
b 1 1

𝒓

lossless

16

Goal - Devise a Theory for the Following
• Decide whether a particular relation 𝑹 is in good form

• In the case that 𝑹 is not in “good” form, decompose it into a set of
relations {𝑹𝟏, 𝑹𝟐, … , 𝑹𝒏} such that
– each relation is in good form
– the decomposition is a lossless-join decomposition（无损连接分解）
– the decomposition is dependency-preservation（保持依赖）

• Our theory is based on:
– functional dependencies (函数依赖)
– multi-valued dependencies

17

Functional Dependencies (函数依赖)

• Constraints on the set of legal relations

• Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes

– Or a set of attributes are determined by another set of attributes

• A functional dependency is a generalization of the notion of a key

– Or key is a specific form of functional dependency

18

Functional Dependencies (Cont.)
• Let 𝑹 be a relation schema, 𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹
• The functional dependency 𝜶 → 𝜷 holds on 𝑹

– for ANY legal relations 𝒓(𝑹), whenever any two tuples 𝒕𝟏 and 𝒕𝟐 of 𝒓
agree on the attributes 𝜶, they also agree on the attributes 𝜷

– i.e., 𝒕𝟏 𝜶 = 𝒕𝟐[𝜶] ⇒ 𝒕𝟏 𝜷 = 𝒕𝟐[𝜷]
• E.g.,

– Consider 𝒓(𝑨, 𝑩) with the following instance of 𝒓

– the 𝑨 → 𝑩 does NOT hold, but 𝑩 → 𝑨 does hold

1 4
1 5
3 7

19

Functional Dependencies (Cont.)
• 𝐾 is a superkey for relation schema 𝑅 iff 𝑲 → 𝑹
• 𝐾 is a candidate key for 𝑅 iff

– 𝑲 → 𝑹, and
– No 𝜶 ⊂ 𝑲, 𝜶 → 𝑹

• FDs allow us to express constraints that cannot be expressed using
superkeys. Consider the schema:
loan_info_schema = (customer_name, loan_number, branch_name, amount)

We expect this set of FDs to hold:
loan_number → amount
loan_number → branch_name
but would not expect the following to hold:
loan_number → customer_name

20

Applications of Functional Dependencies
• We use functional dependencies to:

– test relations to see if they are legal under a given set of functional

dependencies,

– specify constraints on the set of legal relations

• Note: A specific instance of a relation schema may satisfy a

functional dependency even if the functional dependency does not

holds on all legal instances.

– For example, a specific instance of loan_schema may satisfy

loan_number → customer_name

21

Functional Dependencies (Cont.)
• A functional dependency is trivial(平凡的) if it is satisfied by all

instances of a relation, e.g.,

customer_name, loan_number → customer_name

customer_name → customer_name

– In general, 𝜶 → 𝜷 is trivial if 𝜷 ⊆ 𝜶

• Full dependency and partially dependency

– 𝜷 is fully dependent on 𝜶, if there is no proper subset 𝜶# of 𝜶 such

that 𝜶# → 𝜷. Otherwise, 𝜷 is partially dependent on 𝜶

22

Outline
• Features of Good Relational Designs

F Functional Dependency（函数依赖）

– Functional dependency: why and what?

Ø Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

23

Closure of a Set of Functional Dependencies
• Given a set 𝑭 of FDs, there are some other FDs that are logically

implied (逻辑蕴涵) by 𝑭
– E.g., if 𝑨 → 𝑩 and 𝑩 → 𝑪, then we can infer that 𝑨 → 𝑪
– The set of all FDs logically implied by 𝑭 is the closure (闭包) of 𝑭
– We denote the closure of 𝑭 by 𝑭$

• Can find all of 𝑭% by applying Armstrong’s Axiom（公理）:
– If 𝜷 ⊆ 𝜶, then 𝜶 → 𝜷 (reflexivity:自反律)
– If 𝜶 → 𝜷, then 𝜸𝜶 → 𝜸𝜷 (augmentation:增广律)
– If 𝜶 → 𝜷, and 𝜷 → 𝜸, then 𝜶 → 𝜸 (transitivity:传递律)

• These rules are (正确且完备)
– sound (generate only FDs that actually hold) and
– complete (generate all FDs that hold).

24

Closure of Functional Dependencies (Cont.)
• We can further simplify manual computation of 𝑭% by using the

following additional rules.

– If 𝜶 → 𝜷 holds and 𝜶 → 𝜸 holds, then 𝜶 → 𝜷𝜸 holds (union：合并规则)

– If 𝜶 → 𝜷𝜸 holds, then 𝜶 → 𝜷 holds and 𝜶 → 𝜸 holds (decomposition：分解

规则)

– If 𝜶 → 𝜷 holds and 𝜸𝜷 → 𝜹 holds, then 𝜶𝜸 → 𝜹 holds (pseudotransitivity

：伪传递规则)

The above rules can be inferred from Armstrong’s axioms.

25

Example
• 𝑹 = 𝑨,𝑩, 𝑪, 𝑮,𝑯, 𝑰 𝑭 = {𝑨 → 𝑩,𝑨 → 𝑪, 𝑪𝑮 → 𝑯, 𝑪𝑮 → 𝑰, 𝑩 → 𝑯}
• Some members of 𝑭%

– 𝑨 → 𝑯
• by transitivity from 𝑨 → 𝑩 and 𝑩 → 𝑯

– 𝑨𝑮 → 𝑰
• by augmenting 𝑨 → 𝑪 with 𝑮 to get 𝑨𝑮 → 𝑪𝑮 and then transitivity

with 𝑪𝑮 → 𝑰
– 𝑪𝑮 → 𝑯𝑰

• from 𝑪𝑮 → 𝑯 and 𝑪𝑮 → 𝑰: union rule can be inferred from
– definition of functional dependencies, or
– augmentation of 𝑪𝑮 → 𝑰 to infer 𝑪𝑮 → 𝑪𝑮𝑰, augmentation of
𝑪𝑮 → 𝑯 to infer 𝑪𝑮𝑰 → 𝑯𝑰, and then transitivity

26

Procedure for Computing 𝑭!

• To compute the closure of a set of FDs 𝑭:

NOTE: We will see an alternative procedure for this task later

𝑭$ = 𝑭
apply reflexivity (自反律) /* Generates all trivial dependencies */
repeat

for each FD 𝒇 in 𝑭$
apply augmentation (增广律) rules on 𝑓
add the resulting FDs to 𝑭$

for each pair of FDs 𝒇𝟏 and 𝒇𝟐 in 𝑭$

if 𝒇𝟏 and 𝒇𝟐 can be combined using transitivity (传递律)
then add the resulting FD to 𝑭$

until 𝑭$ does not change any further

27

𝑭!

R(X,Y,Z), F = {X→Y, Y→Z}, F+ ？

F+ = {

X→ Φ, Y→ Φ, Z→ Φ, XY→ Φ, XZ→ Φ, YZ→ Φ, XYZ→ Φ,
X→X, Y→Y, Z→Z, XY→X, XZ→X, YZ→Y, XYZ→X,

X→Y, Y→Z, XY→Y, XZ→Y, YZ→Z, XYZ→Y,

X→Z, Y→YZ, XY→Z, XZ→Z, YZ→YZ, XYZ→Z,

X→XY, XY→XY, XZ→XY, XYZ→XY,

X→XZ, XY→YZ, XZ→XZ, XYZ→YZ,

X→YZ, XY→XZ, XZ→YZ, XYZ→XZ,
X→XYZ, XY→XYZ, XZ→XYZ, XYZ→XYZ}

F={X→A1, …… , X→An}, to compute F+ is a NP problem

cv

28

Outline
• Features of Good Relational Designs

F Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

Ø Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

29

Closure of Attribute Sets
• Given a set of attributes 𝜶, define the closure of 𝜶 under 𝑭 (denoted

by 𝜶%) as the set of attributes that are functionally determined by 𝜶
under 𝑭:

𝜶 → 𝜷 is in 𝑭% ⟺ 𝜷 ⊆ 𝜶%

• Algorithm to compute 𝜶% :
result:=𝛼;
while (changes to result) do

for each 𝛽 → 𝛾 in 𝐹 do
begin

if 𝛽 ⊆result, then result:=result ∪ 𝛾
end

30

Example of Attribute Set Closure
Given R<U,F>, U = {A,B,C,D,E}, F={AB→C,B→D,C→E,EC→B,AC→B};
Compute: (AB)F

+,(AC)F
+,(EC)F

+

X(0)={A，B}；
First loop:
X(1): for each FD in F, find FDs that the left hand side(LHS) is A,B or AB, then

AB→C,B→D, and X(1)={A,B}∪{C,D}={A,B,C,D};
Second loop:
X(1)≠X(0), find FDs that the left hand side is the subset of {ABCD}, then

AB→C,B→D,C→E,AC→B, and X(2)=X(1)∪{C,D,E,B}={A,B,C,D,E};
X(2)=U, all attributes are in X(2), the attribute set closure computing is end.
So (AB)F

+ = {A,B,C,D,E}.
(AC)F

+ = ??? (EC)F
+ = ???

(AC)F
+ = {A,B,C,D,E}； (EC)F

+ = {B,C,D,E}
Note：观察属性在函数依赖集中的情况，如何确定超码、候选码，有何规律？

31

Example of Attribute Set Closure
• 𝑹 = 𝑨,𝑩, 𝑪, 𝑮,𝑯, 𝑰 , 𝑭 = {𝑨 → 𝑩,𝑨 → 𝑪, 𝑪𝑮 → 𝑯, 𝑪𝑮 → 𝑰, 𝑩 → 𝑯}
• Calculate (𝑨𝑮)%

– result = AG
– result = ABCG (𝐴 → 𝐶 and 𝐴 → 𝐵)
– result = ABCGH (𝐶𝐺 → 𝐻 and 𝐶𝐺 ⊆ 𝐴𝐵𝐶𝐺)
– result = ABCGHI = R (𝐶𝐺 → 𝐼 and 𝐶𝐺 ⊆ 𝐴𝐵𝐶𝐺𝐻)

• Is AG a candidate key?
– Is AG a superkey?

• Does 𝑨𝑮 → 𝑹? == Is (𝑨𝑮)!⊇ 𝑹
– Is any subset of AG a superkey?

• Does 𝑨 → 𝑹? == Is (𝑨)!⊇ 𝑹
• Does 𝑮 → 𝑹? == Is (𝑮)!⊇ 𝑹

(𝑨)%=ABCH
(𝑮)%=G （观察属性A、G）

32

Applications of Attribute Closure
• Testing for superkey
• Testing functional dependencies

– To check if a functional dependency 𝜶 → 𝜷 holds (or, in other words,
is in 𝑭$), just check if 𝜷 ⊆ 𝜶$

– Compute 𝜶$ by using attribute closure, then check if it contains 𝜷
– A simple and cheap test

• Computing closure of 𝑭
– For each 𝜸 ⊆ 𝑹, we find the closure 𝜸$, and for each 𝑺 ⊆ 𝜸$, we

output a functional dependency 𝜸 → 𝑺

33

Outline
• Features of Good Relational Designs

F Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

Ø Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

– Dependency preservation （依赖保持）

34

Canonical Cover (正则覆盖/最小覆盖)
• Sets of FDs may have redundant FDs that can be inferred from

the others
– E.g., 𝑨 → 𝑪 is redundant in: {𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑪}
– Parts of a FD may be redundant

• E.g., on RHS: {𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑪𝑫} can be simplified to
{𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑫}

• E.g., on LHS: {𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨𝑪 → 𝑫} can be simplified to
{𝑨 → 𝑩, 𝑩 → 𝑪, 𝑨 → 𝑫}

• Intuitively, a canonical cover of F is a “minimal” set of FDs
equivalent to F, having no redundant FDs or redundant parts of FDs

35

Extraneous Attributes (无关属性)
• Consider a set 𝑭 of FDs and the FD 𝜶 → 𝜷 in F

– Attribute A is extraneous (无关的) in 𝜶 (左侧) if 𝑨 ∈ 𝜶 and 𝑭 logically
implies 𝑭 − 𝜶 → 𝜷 ∪ {(𝜶 − 𝑨) → 𝜷}

– Attribute A is extraneous in 𝜷 (右侧) if 𝑨 ∈ 𝜷 and the set of FDs
𝑭 − 𝜶 → 𝜷 ∪ {(𝜶 → (𝜷 − 𝑨)} logically implies F

• Note: implication in the opposite direction is trivial in each of the
cases above

• Example: Given 𝑭 = {𝑨 → 𝑪, 𝑨𝑩 → 𝑪}
– 𝑩 is extraneous in 𝑨𝑩 → 𝑪 because {𝑨 → 𝑪, 𝑨𝑩 → 𝑪} logically implies 𝑨 →
𝑪 (i.e., the result of dropping 𝑩 from 𝑨𝑩 → 𝑪)

• Example: Given 𝑭 = {𝑨 → 𝑪, 𝑨𝑩 → 𝑪𝑫}
– 𝑪 is extraneous in 𝑨𝑩 → 𝑪𝑫, it can be inferred from = {𝑨 → 𝑪, 𝑨𝑩 → 𝑫}

36

Testing if an Attribute is Extraneous
• Consider a set F of FDs and a®b in F.
• To test if attribute AÎa is extraneous in a (左侧LHS)

1. compute ({a} – A)+ using the dependencies in F
2. check that ({a} – A)+ contains b; if it does, A is extraneous

• To test if attribute AÎb is extraneous in b (右侧RHS)
1. compute a+ using only the dependencies in F’ = (F – {a®b}) È

{a®(b – A)},
2. check that a+ contains A; if it does, A is extraneous

37

Canonical Cover
• A canonical cover for F is a set of FDs 𝑭𝒄 such that

– 𝐹 logically implies all dependencies in 𝐹%, and
– 𝐹% logically implies all dependencies in 𝐹, and
– No FD in 𝐹% contains an extraneous attribute, and
– Each left side of FD in 𝐹% is unique, i.e., there are no two FDs 𝛼& → 𝛽&

and 𝛼' → 𝛽' such that 𝛼& = 𝛼'
• To compute a canonical cover for 𝐹:

repeat
use the union rule to replace any dependencies in F

𝛼& → 𝛽& and 𝛼& → 𝛽' with 𝛼& → 𝛽& 𝛽'
find a FD 𝛼 → 𝛽 with an extraneous attr. either in 𝛼 or in 𝛽

If an extraneous attr. is found, delete it from 𝛼 → 𝛽
until F does not change

38

Example of Computing a Canonical Cover
• R = (A, B, C) F = {A®BC, B®C, A®B, AB®C }, Fc=?

– Combine A®BC and A®B into A®BC
• Set is now {A®BC, B®C, AB®C}

– A is extraneous in AB®C
• Check if the result of deleting A from AB®C is implied by the

other dependencies B®C
• Set is now {A®BC, B®C}

– C is extraneous in A®BC
• Check if A®C is logically implied by A®B and the other

dependencies B®C
– The canonical cover is: Fc= {A®B, B®C}

• A canonical cover might not be unique. For {𝑨 → 𝑪,𝑩 → 𝑨𝑪, 𝑪 → 𝑨𝑩}, 𝑭𝒄 =
{𝑨 → 𝑪,𝑩 → 𝑪, 𝑪 → 𝑨𝑩} or 𝑭𝒄 = {𝑨 → 𝑪,𝑩 → 𝑨𝑪, 𝑪 → 𝑩}

39

Example of Computing a Canonical Cover
R<U,F>, U={X,Y,Z,W},

F={W→Y,Y→W,X→WY,Z→WY,XZ→W}, Fc?

(1) F={W→Y,Y→W,X→WY,Z→WY,XZ→W}

(2) For RHS, X→WY => X→Y; Z→WY => Z→Y

F={W→Y,Y→W, X→Y, Z→Y,XZ→W}

(3) For LHS, XZ→W => X→W

F={W→Y,Y→W, X→Y, Z→Y,X→W}

(4) Delete redundant FDs,F={W→Y,Y→W,X→Y,Z→Y, X→W}

Fc = {W→Y,Y→W,X→Y,Z→Y} or Fc = {W→Y,Y→W,X→W,Z→W}

40

Example of Computing a Canonical Cover

F = {A→B，B→A，B→C，A→C，C→A}

Fc1= {A→B，B→C，C→A}

Fc2= {A→B，B→A，A→C，C→A}

• Fc1、Fc2 are all canonical covers for F

• So, a canonical cover might not be unique

41

More Examples
• R<U,F>, U={A,B,C,D,E,G},

F={AB→C, C→A, BC→D, ACD→B, D→EG, BE→C, CG→BD, CE→AG}，

Compute (AB)+, (AC)+, (CD)+, Fc

– (AB)+={A,B,C,D,E,G}=U, (AC)+ ? (CD)+ ?

– (AC)+={A,C}, (CD)+={A,B,C,D,E,G}=U

– Fc={AB→C,C→A,BC→D,CD→B,D→E,D→G,BE→C,CG→D,CE→G}

– (CG)+={A,B,C,D,E,G}=U, (CE)+={A,B,C,D,E,G}=U

42

Find Candidate Keys
• For 𝑹(𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏) and FDs in 𝑭, all attributes can be

classified into 4 types：

– L：only exists in LHS

– R：only exists in RHS

– N：not exists in either LHS or RHS

– LR：exists in LHS and RHS both

43

Find Candidate Keys (Cont.)
• Algorithm：find candidate keys for R
• Input：R and its FDs set F
• Output：All candidate keys for R

(1) Classify all attributes into two parts: X represents for L and N types, Y for LR type
(2) Compute 𝑿!, if 𝑿! contains all attributes of R, then X is the only candidate key for
R, then goes to (5); otherwise goes to (3)
(3) Take attribute A from Y, compute (𝑿𝑨)!. If (𝑿𝑨)! contains all attributes of R, then
XA is a candidate key for R. Then take another attribute from Y, continue with the
process until all attributes in Y are tested
(4) If all candidate keys are found in step (3), then goes to (5); otherwise take 2 or 3 or
more attributes from Y, and compute the corresponding attribute closure (the attribute
group should not contain any candidate keys already found), till the attribute closure
contains all attributes of R
(5) Finished, and output the result

44

Find Candidate Keys (Cont.)

• Given R<U, F>, U={X, Y, Z, W}, and F={W→Y, Y→W, X→WY,

Z→WY, XZ→W}, find all candidate keys of R

a) Fc = {W→Y, Y→W, X→Y, Z→Y}

b) XLN = XL = XZ，YLR = YW

c) XLN+ = {X,Y,Z,W} = U，so (XZ) is the only candidate key of R

45

Find Candidate Keys (Cont.)
• Given R<U,F>, U={A,B,C,D}, and F={AB→C, C→D, D→A}, find all

candidate keys of R

a) Fc = {AB→C, C→D, D→A}

b) XLN = XL = B，YLR = ACD

c) XLN+ = {B} ≠ U

d) (AB)+ = {ABCD} = U, (BC)+ = {ABCD} = U, (BD)+ = {ABCD} = U, then (AB)

、(BC)、(BD) are all candidate keys of R

46

Find Candidate Keys (Cont.)
• Given R<U,F>, U={OBISQD}, F={S→D, D→S, I→B, B→I, B→O, O→B},

find all candidate keys of R

(1) Fc= { ？}

(2) XLN= ？，YLR= ？

(3) XLN+={ ？} = or ≠U？

(4) …… ，……

candidate keys of R ？

(QSO)、(QDO)、(QSB)、(QDB)、(QSI)、(QDI)

47

Find Candidate Keys (Cont.)
• Given R<U,F>, U={OBISQD}, F={S→D, D→S, I→B, B→I, B→O, O→B},

find all candidate keys of R
(1) Fc={S→D, D→S, I→B, B→I, B→O, O→B}=F
(2) XLN= Q，YLR= SDBIO
(3) XLN+={Q} ≠U
(4)(QS)+={QSD},(QD)+={QSD},(QB)+={QBIO},(QI)+={QBIO},(QO)+={QBIO};

≠U
(QSO)+、(QSB)+、(QSI)+、(QSD)+、(QDO)+、(QDB)+、(QDI)+、(QDS)+、
(QBO)+、(QBI)+、(QBS)+、(QBD)+、(QIO)+、(QIB)+、(QSI)+、(QID)+、
(QOB)+、(QOI)+、(QOS)+、(QOD)+、

candidate keys of R:
(QSO)、(QSB)、(QSI)、 (QDO)、 (QDB)、 (QDI)

48

Outline
• Features of Good Relational Designs
F Functional Dependency（函数依赖）

– Functional dependency: why and what?
– Closure of functional dependency （函数依赖闭包）
– Closure of attribute sets （属性集闭包）
– Canonical cover （最小覆盖）
Ø Lossless-join decomposition （无损链接分解）
– Dependency preservation （依赖保持）

49

Goals of Normalization
• Decide whether a particular relation R is in good form
• In the case that R is not in “good” form, decompose it into a set

of relations {R1,R2,...,Rn} such that
– each relation is in good form
– the decomposition is a lossless-join decomposition
– the decomposition is dependency-preservation

• Our theory is based on:
– functional dependencies
– Multi-valued dependencies

50

Decomposition
• Decompose the relation schema Lending_schema into:

Branch_schema = (branch_name, branch_city,assets)
Loan_info_schema = (customer_name, loan_number,

branch_name, amount)
• All attributes of an original schema (R) must appear in the

decomposition (R1, R2):
R = R1 È R2

• Lossless-join decomposition.For all possible relations r on schema R
r = ÕR1 (r) ÕR2 (r)

• Theorem: A decomposition of R into R1 and R2 is lossless join iff at
least one of the following dependencies is in F+:
– R1 Ç R2 ® R1
– R1 Ç R2 ® R2

51

Example of Non Lossless-Join Decomposition

• Decomposition of R = (A, B, C), F = {A ® C, B ® C)
R1 = (A,C), R2 = (B,C)

A B C
a 1 1
a 2 1
b 1 1

A C
a 1
b 1

B C
1 1
2 1

𝒓 𝜫𝑨,𝑪(𝒓) 𝜫𝑩,𝑪(𝒓)

A B C
a 1 1
a 2 1
b 1 1
b 2 1

ÕAC (r) ÕBC (r)

R1 = (A,B) R2 = (B,C)？

A B
a
a

1
2

b 1

𝜫𝑨,𝑩(𝒓)

ÕAB (r) ÕBC (r)

lossy

A B C
a 1 1
a 2 1
b 1 1

𝒓

lossless

R1 Ç R2 ® R1 ?
R1 Ç R2 ® R2 ?

R1 Ç R2 ® R2

52

Example
• R = (A, B, C)

F = {A ® B, B ® C)
– Can be decomposed in two different ways

• R1 = (A, B), R2 = (B, C)
– Lossless-join decomposition:

R1 Ç R2 = {B} and B ® BC
– Dependency preserving

• R1 = (A, B), R2 = (A, C)
– Lossless-join decomposition:

R1 Ç R2 = {A} and A ® AB
– Not dependency preserving

(cannot check B ® C without computing R1 R2)

53

Example

p Given R<U,F>, U={A,B,C,D,E}, F={AB→C, C→D, D→E}, and a

decomposition ρ of R into:

R1(A,B,C), R2(C,D), R3(D,E).

ρ is a lossless-join decomposition or a lossy one?
– (A,B, C, D, E) -> (A, B, C, D) +(D, E) (LJD)

– (A,B,C,D) -> (A,B,C) + (C, D) (LJD)

– ρ is LJD

54

Test for Lossless-join Decomposition
• Input: 𝑹 < 𝑼, 𝑭 >, 𝑼 = {𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏}, 𝑭, a decomposition of 𝑅: 𝝆 = {𝑹𝟏 <

𝑼𝟏, 𝑭𝟏 >,𝑹𝟐 < 𝑼𝟐, 𝑭𝟐 >,… , 𝑹𝒌 < 𝑼𝒌, 𝑭𝒌 >}
• Output: 𝜌 is a lossless-join decomposition or a lossy one

(1) Construct a table 𝑳 with 𝒌 rows and 𝒏 columns, and each column corresponds to an
attribute 𝑨𝒋(𝟏 ≤ 𝒋 ≤ 𝒏), and each row corresponds to a schema 𝑹𝒊(𝟏 ≤ 𝒊 ≤ 𝒌). If 𝑨𝒋 is in
𝑹𝒊 (𝑨𝒋 ∈ 𝑹𝒊), then fill the form with 𝒂𝒋 at 𝑳𝒊,𝒋, otherwise fill it with 𝒃𝒊,𝒋.
(2) Regard table L as a relation on schema R, and check for each FD in F whether the
FD is satisfied or not. If the FD is not satisfied, rewrite the table as:
– For a FD in F：X→Y, if t[x1]=t[x2], and t[y1]≠t[y2], then rewrite y with the same

value;
• If there is an 𝒂𝒋 for y, then another y is set to 𝒂𝒋;

• If there is not an 𝒂𝒋, then use one 𝒃𝒊𝒋 to replace the other y;

– Till no changes occur on form 𝑳
(3) If there is a row of all 𝐚𝐢 (i.e. 𝐚𝟏𝐚𝟐… 𝐚𝐧), then ρ is a lossless-join decomposition.
Otherwise, ρ is a lossy decomposition.

55

Example
• Given R<U,F>, U={A,B,C,D,E}, F={AB→C, C→D, D→E}, and a

decomposition ρ of R into: R1(A, B, C), R2(C, D), R3(D, E). ρ is a
lossless-join decomposition or a lossy one?
(1) First, construct a table as:

A B C D E
R1(A,B,C) a1 a2 a3 b14 b15

R2(C,D) b21 b22 a3 a4 b25

R3(D,E) b31 b32 b33 a4 a5

56

Example (cont.)
(2) For AB→C in F, no change occurs; for C→D, rewrite 𝒃𝟏𝟒 with 𝒂𝟒,
and for D→E, rewrite 𝒃𝟏𝟓 and 𝒃𝟐𝟓 as 𝒂𝟓. Then we have a row as: 𝒂𝟏,
𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓. The decomposition of R into R1, R2, and R3 is a
lossless-join one.

A B C D E
R1(A,B,C) a1 a2 a3 b14 a4 b15 a5

R2(C,D) b21 b22 a3 a4 b25 a5

R3(D,E) b31 b32 b33 a4 a5

57

Example of Non Lossless-Join Decomposition

• Decomposition of R = (A, B, C), F = {A ® C, B ® C)
R1 = (A,C), R2 = (B,C)

A B C
a 1 1
a 2 1
b 1 1

A C
a 1
b 1

B C
1 1
2 1

𝒓 𝜫𝑨,𝑪(𝒓) 𝜫𝑩,𝑪(𝒓)

A B C
a 1 1
a 2 1
b 1 1
b 2 1

ÕAC (r) ÕBC (r)

R1 = (A,B) R2 = (B,C)？

A B
a
a

1
2

b 1

𝜫𝑨,𝑩(𝒓)

ÕAB (r) ÕBC (r)

lossy

A B C
a 1 1
a 2 1
b 1 1

𝒓

lossless

R1 Ç R2 ® R1 ?
R1 Ç R2 ® R2 ?

R1 Ç R2 ® R2

58

Example
• R = (A, B, C)

F = {A ® B, B ® C)
– Can be decomposed in two different ways

• R1 = (A, B), R2 = (B, C)
– Lossless-join decomposition:

R1 Ç R2 = {B} and B ® BC
– Dependency preserving

• R1 = (A, B), R2 = (A, C)
– Lossless-join decomposition:

R1 Ç R2 = {A} and A ® AB
– Not dependency preserving

(cannot check B ® C without computing R1 R2)

59

Outline
• Features of Good Relational Designs

F Functional Dependency（函数依赖）

– Functional dependency: why and what?

– Closure of functional dependency （函数依赖闭包）

– Closure of attribute sets （属性集闭包）

– Canonical cover （最小覆盖）

– Lossless-join decomposition （无损链接分解）

Ø Dependency preservation （依赖保持）

60

Normalization using Functional Dependencies

• When we decompose a relation schema 𝑹 with a set of FDs F into
𝑹𝟏, 𝑹𝟐,.., 𝑹𝒏 we want
– Lossless-join decomposition: Otherwise decomposition would result in

information loss
– No redundancy: The relations 𝑹𝒊 preferably should be in either BCNF

or 3NF
– Dependency preservation: Let 𝑭𝒊 be the subset of dependencies 𝑭$

that include only attributes in 𝑹𝒊
• (𝑭𝟏 ∪ 𝑭𝟐 ∪⋯∪ 𝑭𝒏)!= 𝑭!

• Otherwise, checking updates for violation of FDs may require computing
joins, which is expensive

61

Testing for Dependency Preservation
• To check if FD 𝜶 → 𝜷 is preserved in a decomposition of 𝑹 into 𝑹𝟏,

𝑹𝟐,…, 𝑹𝒏, we apply the following simplified test
result = 𝛼
while (changes to result) do

for each 𝑅+ in the decomposition
𝑡 = (result ∩ 𝑅+)+ ∩ 𝑅+
result = result ∪ 𝑡

– If result contains all attributes in 𝜷, then the functional dependency 𝜶 → 𝜷 is
preserved

• We apply the test on all dependencies in F to check if a decomposition
is dependency preserving

• This procedure takes polynomial time, instead of the exponential time
required to compute F+ and (𝑭𝟏 ∪ 𝑭𝟐 ∪⋯∪ 𝑭𝒏)%

62

Example
• 𝑹 = (𝑨,𝑩, 𝑪), 𝑭 = {𝑨 → 𝑩,𝑩 → 𝑪}

– Can be decomposed in two different ways
• 𝑹𝟏 = (𝑨,𝑩), 𝑹𝟐 = (𝑩, 𝑪)

– Lossless-join decomposition: 𝑹𝟏 ∩ 𝑹𝟐 = {𝑩} and 𝑩 → 𝑪
– 𝑨 → 𝑩, 𝑩 → 𝑪, Test A→ 𝐶 ?
– Dependency preserving

• 𝑹𝟏 = (𝑨,𝑩), 𝑹𝟐 = (𝑨, 𝑪)
– Lossless-join decomposition: 𝑹𝟏 ∩ 𝑹𝟐 = {𝑨} and 𝑨 → 𝑩
– 𝑨 → 𝑩, 𝑨 → 𝑪, check 𝑩 → 𝑪
– Not dependency preserving

(cannot check 𝑩 → 𝑪 without computing 𝑹𝟏 ⋈ 𝑹𝟐)

63

End of Lecture 6

