e "y o

Introduction to Databases

HIRET > ~

Lecture 11: Transaction Processing

BL11YF: FHabH
HKkpPE / Shuigeng Zhou

BEHE: sgzhou@fudan.edu.cn PHE: admis.fudan.edu.cn/sgzhou

Pl

—

H BREWFHBEBOR ER

Outline of the Course

* Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 1 (Feb. 29) - Chl: Introduction - Lect. 7 (May 2 -> Apr. 28) - Ch12/13:
Storage systems & structures

Part 1 Relational Databases , .
- Lect. 2 (Mar. 7) - Ch2: Relational model - Lect. 8 (May 10) - Ch14: Indexing and

(data model, relational algebra) Hashing
- Lect. 3 (Mar. 14) - Ch3: SQL (Introduction) - Part 4 Query Processing & Optimization

- Lect. 4 (Mar. 21) - Ch4/5: Intermediate and - Lect. 9 (May 17) - Ch15: Query processing
Advanced SQL - Lect. 10 (May 24) - Ch16: Query
Part 2 Database Design optimization
Lect. 5 (Mar. 28) - Ch6: Database design & Par"r 5 Transaction Management
based on E-R model Lect. 11 (May 30) - Ch17: Transaction
- Apr. 4 (Tomb-Sweeping Day): no course processing
- Lect. 6 (Apr. 11/18) - Ch7: Relational - Lect. 12 (Jun. 7) - Ch18: Concurrency
database design control
. [MidTerm exam: Apr. 25] - Lect. 13 (Jun. 14) - Ch19: System recovery
- 13: 00-15: 00, H3109 :
Final exam: 13:00-15:00, Jun. 26

Database
System

Structure

(tellers, agents,
web users)

naive users licati sophisticated
application S—
programmers (analysts)

database

administrators User‘s

application query
rograms tools

use

interfaces

administration
tools

Applications/tools

v
//< mt’}Pmlif;rand }—» DML queries I |DDL interpreter

application
program DML compiler
object code and organizer

query evaluation J

engine

DBMS

query processor

authorization

and integrity
manager

transaction
manager

indices ’ data dictionary |

data statistical data

storage manager

disk storage DaTabase

@ Transaction Concept
® Schedules

® Serializable Schedule
® Recoverable Schedule

® Testing for Serializability

Transaction Concept

* A transaction (3853) is a unit of program execution consisting of
multiple operations
- During transaction execution, the database may be inconsistent

- After the transaction is committed, the database must be consistent
Two main issues

- Concurrent execution of multiple transactions

- Hardware failures and system crashes

ACID Properties

Atomicity ([FFT¥)

- Either all operations of the transaction are properly reflected in the
database or none are

Consistency (—Z1H)

- Execution of a fransaction in isolation preserves the consistency of the
database

Isolation (JRET1¥)

- Although multiple transactions may execute concurrently, each
transaction must be unaware of other transactions

Durability (3FX[#)
- After a transaction completes successfully, the changes it has made to
the database persist, even if there are system failures

Example of Fund Transfer

A transaction to transfer $50 from account A to account B:
1. read(A)
2.A=A-50
3. write(A)
4. read(B)
5.B:=B+50
6. write(B)

Consistency requirement
- The sum of A and B is unchanged by the execution of the transaction
Atomicity requirement

- If the transaction fails after step 3 and before step 6, the system should
ensure that its updates are not reflected in the database. Otherwise, an
inconsistency will occur

Example of Fund Transfer (Cont.)

* Durability requirement

- Once the user was notified that the transaction has completed, the
updates to the database by the transaction must persist despite
failures

Isolation requirement

- If between steps 3 and 6, another transaction is allowed to access the
partially updated database, it will see an inconsistent database

- Can be ensured trivially by running transactions serially, i.e., one after
the other. However, executing multiple transactions concurrently has
significant benefits

Transaction State

- Active(GEER)
- The initial state. The transaction stays in this state while it is
executing

- Partially committed(BEBH1R3Z)
- After the final statement has been executed

* Failed(5<¥%)

- After discovering that normal execution can no longer proceed

* Aborted(Xi#f. L)

After the transaction has been rolled back ([2;&) and the
database restored to its state prior to the start of the
transaction

- Restart the fransaction - only if no internal logical error
happens in the transaction

- Kill the fransaction - problems arising with the transaction,
input data, no desirable data found in the database

+ Committed(#232)
- After successful completion 9

partially
committed

aborted

® Transaction Concept
@ Schedules

® Serializable Schedule
® Recoverable Schedule

® Testing for Serializability

10

Concurrent Executions

» Concurrent execution
- Multiple transactions are allowed to run concurrently in the system
- Advantages
» Increase processor and disk utilization

* Reduce average response time

- Concurrency control

- Mechanisms to achieve isolation, i.e., fo control the interaction among
the concurrent transactions in order to prevent them from destroying
the consistency of the database

11

Schedules

+ Schedule (RE) T -
- sequences that indicate the chronological order read(A)
in which instructions of concurrent transactions A=A -50
are executed write (A)
- aschedule for a set of transactions must consist read(B)
of all instructions of those transactions fv r:iTe]?Bg >0
- must preserve the order in which the read(A)
instructions appear in each individual transaction. temp := A* 0.1
- Example A=A temp
- Let T, transfer $50 from A 10 B, and T, \r/\érgj((}g)
transfer 10% of the balance from A to B B:=B + temp
- Schedule 1 is a serial schedule (E2{7AE), in write(B)
which T, is followed by T,
Schedule 1

12

Example Schedule (Cont.)

* Another serial schedule where T, is followed by T,

T T2 ikl 1>
read(A) read(A)
A=A-50 temp :=A*0.1
write (A) A=A — temp
read(B) write(A)

B:=B + 50 read(B)
write(B) B := B + temp

read(A) write(B)

temp := A *0.1 read(A)

A:=A—temp A=A —50

write(A) write(A)

read(B) read(B)

B := B + temp B:=B+50

write(B) write(B)

Schedule 1 Schedule 2

13

Example Schedule (Cont.)

Non-serial schedule T T,
. read(A)
- Let T, and T, be the transactions A=A -50
. . ite(A
defined previously write() read(A)
: : temp := A*0.1
- Schedule 3 is not a serial schedule, E@A ~ temyp
but it is equivalent to Schedule 1 write(A)
read(B)
« A'=(A-50)-(A-50)*0.1=(A-50)*0.9 B:=5+50
write(B)
. B'=B+50+(A-50)*0.1 read(B)
oo, B := B + temp
+ A+B'=A+B write(B)

Schedule 3
14

Example Schedule (Cont.)

The following concurrent schedule Iy I
read(A)
does not preserve the value of the =A - 50
read(A)
sum A + B. temp .= A*0.1
A=A — temp
- A'zA-BO write%A)
read(B)
- B'=B+A*0.1
read(B
- A'+B’ = A+B-50+A*0.1 z A+B B:= 153 ')f' 50
write (B)
B :=B + temp
_write(B)

Schedule 4
15

® Transaction Concept

® Schedules

@ Serializable Schedule
® Recoverable Schedule

® Testing for Serializability

16

Serializability (RIER{T{L)

Assumption

- Each transaction preserves database consistency, thus serial execution
of a set of tfransactions preserves database consistency

Serializability

- A schedule is serializable if it is equivalent to a serial schedule
- Conflict serializability (HZERJERITIE)
- View serializability (fREIRJEHRITHE)

Note

- We ignore operations other than read and write instructions. Our
simplified schedules consist of only read and write instructions

17

Conflict Serializability

Conflict

- Given instructions I; and I; of transactions T; and T; respectively, conflict occurs
iff there exists some item Q accessed by both I; and I;, and at least one of these
instructions write Q

- Four cases

e I; = read(Q), I; = read(Q). I; and I; (no conflict)

o I; = read(Q), I; = write(Q). (conflict)
o I; = write(Q), I; = read(Q). (conflict)
o I; = write(Q), I; = write(Q). (conflict)

Intuitively, a conflict between I; and I; forces a (logical) femporal order between them

If I; and I; are consecutive in a schedule and they do not conflict, their results would
remain the same even if they had been interchanged in the schedule

18

Conflict Serializability (Cont.)

Conflict equivalent

- If aschedule S can be transformed into a schedule S’ by a series of
swaps of non-conflicting instructions, we say that S and S’ are conflict

equivalent

- We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule

Example of a schedule that is not conflict serializable

- We are unable to swap instructions in the following schedule to obtain
either the serial schedule <T3, T,>, or the serial schedule < T,, T3>.

I3

Ty

read(Q)
write(Q)

write(Q)

19

Conflict Serializability (Cont.)

Schedule 1 can be transformed
info Schedule 2, a serial schedule
where T, follows T, by a series
of swaps of non-conflicting

instructions

Therefore, Schedule 1 is conflict

serializable

Ty T; T T2
read(A) read(A)
write(A) write(A)
ﬂ read(A) Read(B)
write(A) Write(B)
read(B) Hj |:> Read(A)
write(B) Write(A)
read(B) read(B)
write(B) write(B)
Schedule 1 Schedule 2

20

Conflict Serializability (Cont.)

e Example

Scl=ri(Awl(A)r2(A)w2(A)r1(B)wl(B)r2(B)w2(B)

m Swap w2(A§£r$)wM we have
r1(Awl(A)r2(A)r1(B)wl(B)w2(A)r2(B)w2(B)
m Swap r2(A) and (B), then:

sc2 €FI(A LA IEWIBYZ(Aw2(A)r2BW2E)

m Sc2 is equivalent to a serializable schedule T;,T,

m Then Scl is conflict serializable

21

Conflict Serializability (Cont.)

O A conflict serializable schedule is a serializable schedule, but a serializable
schedule is not always conflict serializable.

O E.g., three transactions
T1=WI1(Y)W1(X), T2=W2(Y)W2(X), T3=W3(X)
is serializable

is not equivalent to L1, and not conflict

m L2 is serializable, the result of the schedule is equivalent to L1(final write X is
from T3, final write Y is from T2)

22

View Serializability

e S and S’ are view equivalent if the following three conditions are met:

- For each data item Q, if transaction T; reads the initial value of Q in schedule S,
then transaction T; must, in schedule S’, also read the initial value of Q.

- For each data item Q, if transaction T; executes read(Q) in schedule S, and that
value was produced by transaction T; (if any), then transaction T; must in schedule
S’ also read the value of Q that was produced by transaction T;.

- For each data item Q, the transaction (if any) that performs the final write(Q)
operation in schedule S must perform the final write(Q) operation in schedule S’

* As can be seen, view equivalence is also based purely on reads and
writes alone.

23

View Serializability (Cont.)

If a schedule S is view serializable, it is view equivalent to a serial

schedule.

Every conflict serializable schedule is also view serializable.

A schedule which is view-serializable but not conflict serializable.
Equivalent to T3, Ty, T,

Ts Ty T T5 Iy To
read(Q) read(Q)
write(Q) Wi
write(Q) T Write(@
write(Q) write(Q)

Every view serializable schedule that is not conflict serializable
has blind writes - write without read

24

Other Notions of Serializability

The following schedule produces the same outcome as the serial

schedule <T{,T5>, yet it is not conflict equivalent or view equivalent

T, Ts
read(A)
A:=A-50
write(A)

read(B)
B:=B-10
write(B)
read(B)
B:=B +50
write(B)
read(A)
A=A+10
write(A)

Determining such equivalence requires analysis of operations other
than read and write.

25

 Transaction Concept

+ Schedules

+ Serializable Schedule

& Recoverable Schedule

- Testing for Serializability

26

Recoverability (RIS 1)

Recoverable schedule (TI{kEiEE)

- If atransaction T; reads a data items previously written by a tfransaction
T;, the commit operation of T; appears before the commit operation of T;

- The following schedule is not recoverable if Ty commits immediately after

the read
Tg Ty
read(A)
write(A)
read(A)
read(B)

27

Recoverability (Cont.)

+ Cascading rollback(¢REXEIZE)

- A single transaction failure leads to a series of transaction rollbacks
- Consider the following schedule where none of the transactions has yet committed

Tho T T1»
read(A)
read(B)
write(A)
read(A)
write(A)
read(A)

- If Ty, fails, T;; and Ty, must also be rolled back
* Can lead to the undoing of a significant amount of work

28

Recoverability (Cont.)

Cascadeless schedules (FSHRBXAELEERE)

- For each pair of transactions T; and T; such that T; reads a data item
previously written by T;, the commit operation of T; appears before the
read operation of T;

- Cascading rollbacks cannot occur and every cascadeless schedule is also

recoverable

- It is desirable to restrict the schedules to those that are cascadeless

29

Transaction Definition in SQL

DML must include a construct for specifying the set of actions that
comprise a transaction

In SQL, a transaction begins implicitly
A transaction in SQL ends by:

- Commit work: commits current transaction and begins a new one.
- Rollback work: causes current transaction to abort.

Levels of isolation specified by SQL-92

- Serializable - default: {RERIRITHLIERE

- Repeatable read: RAFEENCIRIZEE, FIRIEANZIAEIEAGEEH
- Read committed: RAIFZENCIRZIENRE, AERJESIE

- Read uncommitted: FVFEEUKRIZZENRE

30

 Transaction Concept

+ Schedules

+ Serializable Schedule

+ Recoverable Schedule

@ Testing for Serializability

31

Testing for Serializability

Given a set of transactions T,, T,, ..., T,
Precedence graph (fli5GEl)

- Adirect graph where the vertices are the transactions

- Wedraw an arc from T; to T; if the two transactions conflict, and T;
accessed the data item on which the conflict arose earlier.

- We label the arc by the data item that was accessed

Example

T1 write(x) before T2 read(x)
T1 write(x) before T2 write(x)

X
T1 read(x) before T2 write(x)
e @ T2 write(y) before T1 read(y)
T2 write(y) before T1 write(y)
y T2 read(y) before T1 write(y)

32

Example Schedule A

T T, T; T, Ts
read(X)
read(Y)
read(Z) y

read(V)
read(W) ',‘1/\ Tz

read(W)
read(Y)
write(Y) Y.z y
write(Z) V4
read(V)

read(Y)
write(Y) T3_/‘ T4
read(Z)
write(Z) z
read(V)
write(V) Ty >T; >T3 >Ty—>Ts

Tl—)Tg—)T2—>T4—)T5
222

33

Test for Conflict Serializability

A schedule is conflict serializable if and only ©
if its precedence graph is acyclic (7o) 0.@
If precedence graph is acyclic, the
serializability order can be obtained by a !

topological sorting of the graph. P

- For example, a serializability order for Schedule *

(1)
?
A in last slidewouldbe T - T, > T3 >T, > T, P e‘
(0)

* Any others? ()

34

Test for View Serializability

The precedence graph test for conflict serializability
must be modified to apply to a test for view
serializability

The problem of checking if a schedule is view
serializable falls in the class of NP-complete problems.
- Thus existence of an efficient algorithm is unlikely

- However practical algorithms that just check some sufficient
conditions for view serializability can still be used

35

Concurrency Control vs. Serializability Tests

Testing a schedule for serializability after it has executed is too late

Goal - to develop concurrency control protocols that will assure
serializability.
- They will generally not examine the precedence graph as it is being created

- Instead a protocol will impose a discipline that avoids non-seralizable
schedules

Tests for serializability help understand why a concurrency control
protocol is correct

36

Assignments

Practice Exercises: 17.6
Exercises: 17.15

Submission DDL: 12:59pm, June 5, 2024

37

End of Lecture 11

38

	标题
	幻灯片 1
	幻灯片 2: Outline of the Course
	幻灯片 3
	幻灯片 4: Outline
	幻灯片 5: Transaction Concept
	幻灯片 6: ACID Properties
	幻灯片 7: Example of Fund Transfer
	幻灯片 8: Example of Fund Transfer (Cont.)
	幻灯片 9: Transaction State
	幻灯片 10: Outline
	幻灯片 11: Concurrent Executions
	幻灯片 12: Schedules
	幻灯片 13: Example Schedule (Cont.)
	幻灯片 14: Example Schedule (Cont.)
	幻灯片 15: Example Schedule (Cont.)
	幻灯片 16: Outline
	幻灯片 17: Serializability（可串行化）
	幻灯片 18: Conflict Serializability
	幻灯片 19: Conflict Serializability (Cont.)
	幻灯片 20: Conflict Serializability (Cont.)
	幻灯片 21: Conflict Serializability (Cont.)
	幻灯片 22: Conflict Serializability (Cont.)
	幻灯片 23: View Serializability
	幻灯片 24: View Serializability (Cont.)
	幻灯片 25: Other Notions of Serializability
	幻灯片 26: Outline
	幻灯片 27: Recoverability (可恢复性)
	幻灯片 28: Recoverability (Cont.)
	幻灯片 29: Recoverability (Cont.)
	幻灯片 30: Transaction Definition in SQL
	幻灯片 31: Outline
	幻灯片 32: Testing for Serializability
	幻灯片 33: Example Schedule A
	幻灯片 34: Test for Conflict Serializability
	幻灯片 35: Test for View Serializability
	幻灯片 36: Concurrency Control vs. Serializability Tests
	幻灯片 37: Assignments
	幻灯片 38: End of Lecture 11

