i

Introduction to Databases

PRSI

Lecture 3: Introduction to SQL
B3P SHALEBHIES W

E7KE / Shuigeng Zhou

BRAE: sgzhou@fudan.edu.cn RHE: admis.fudan.edu.cn/sgzhou

) -

H BRFENB LR B

Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 7 (A&pr. 17) - Ch12/13: Storage
. tems & structures
Part 1 Relational Databases 5Ys , :
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 8 (Apr. 24) - Ch14: Indexing
(data model, relational algebra) * Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3&4: SQL
(Introduction and intermediate) - Lect. 9 (May 8) - Ch15: Query processing
- Lect. 4 (Mar. 13) - Chb: Advanced SQL - Lect. 10 (May 15) - Ch16: Query
Par"l' 2 Database Design optimization
Lect. 5 (Mar. 20) - Ché: Database design . Par-'l' 5 Transaction Management
based on E-R model Lect. 11 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database -
design (Part T) lggg;rrgIZ (May 29) - Ch18: Concurrency
- Lect. 7 (Apr. 3) - Ch7: Relational datab
dzgign (%GE: II)) elational database - Lect. 13 (Jun. 5) - Ch19: Recovery system

Midterm exam: Apr. 10 - Lect. 14 (Jun. 5) - Course review

| Final exam: 13:00-15:00, Jun. 18

University Database

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | FEl Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Instructor table

00128
12345
19991
23121
44553
45678
54321
55739
70557
76543
76653
98765
98988

Zhang
Shankar
Brandt
Chavez
Peltier
Levy
Williams
Sanchez
Snow
Brown
Aoi
Bourikas
Tanaka

Comp. Sci.
Comp. Sci.
History
Finance
Physics
Physics
Comp. Sci.
Music
Physics
Comp. Sci.
Elec. Eng.
Elec. Eng.
Biology

ID name degt_name tot_cred

102
32
80

110
56
46
54
38

0
58
60
98

120

Student table

University Database

year

advisor

s_id
i_id

VY

takes student
D » ID <
1L/) name
course_id i
id —— dept_name
sec_ 1 tot_cred
semester
year
' grade
section course
b course_id < _—E course_id department
—P M < tltle degt name
—»| semester dept_name [™ building
» year < ; -
— gu_ilding time_slot credits budget
| | room_no time_slot_id
time_slot_id [day
start_time
end_time
prereq instructor
classroom — course_id ID
| building | prereq_id name
»| room_no dept_name
capacity teaches salary
ID
L[course_id
L sec_id
semester

E-R Diagram for a Banking Enterprise

brarnch-city
_assets T

branch

account-branch

loarn-brarichi

custormier-rnarnie

paymernt-date
payment-numbers | Cpayment-amouiit>
Crstomer ity

loar—
= [payment_]
payment N—

ts]

[Weak entity se

rriarnager
I < works—for v
worker

employee—11arie

multi-valued
attribute

employee

|

TR AR

il ‘3'"};é?1.'§21,:‘3’; =, start-date

[_@d attribute]

Isavings—acaount | I checking-accorert I

telephiorne-rirennber

irntterest-rate overdraft-armournt

The Banking Schema

branch = (branch_name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee_id, employee_name, telephone_number, start_date)

dependent_name = (employee_id, dname) (derived from a multivalued attribute)

account_branch = (account _number, branch_name)
Joan_branch = (loan_number, branch_name)

borrower = (customer _id, loan number)

depositor = (customer_id, account number, access_date)
cust_banker = (customer_id, employee_id, type)
works_for = (worker_employee id, manager_employee_id)

payment =(loan_number payment_number payment_date,payment_amount)

savings_account = (account _number, interest_rate)
checking_account = (account_number, overdraft_amount)

@ QOverview of SQL
+ SQL Data Definition
Basic Structure of SQL Queries
Additional Basic Operations
Set Operations
Null Values
Aggregate Functions
Nested Subqueries
Modification of the Database

Overview of the SQL Query Language

IBM SEQUEL (Structured English QUEry Language) language developed as

part of System R project at the IBM San Jose Research Laboratory in the
early 1970s

Later SEQUEL was renamed to Structured Query Language (SQL)
because it was already trademarked by an airplane company

ANSI GEEExRVEFSR) and ISO (EfrrEHHL) standard SQL:
- SQL-86

- SQL-89

- SQL-92

- SQL:1999, 2003, 2006, 2008

Commercial systems offer most, if not all, SQL-92 features, plus varying
feature sets from later standards and special proprietary features

- Not all examples here may work on the particular system

Structured Query Language (SQL)

SQLIESE®E&
- HURENGEE (Data definition language, DDL)
- Relation schemas
* Integrity constraints
* View definition
* Authorization
- BEIEMIES (Data manipulation language, DML)
* Queries
- Insertion, Deletion, Updates
- Transaction processing

Overview of SQL
& SQL Data Definition
*+ Basic Structure of SQL Queries
Additional Basic Operations
Set Operations
Null Values
Aggregate Functions
Nested Subqueries
Modification of the Database

10

Data Definition Language (DDL)

Allows the specification of not only a set of relations but also

information about each relation, including:

The schema for each relation

The domain of values associated with each attribute
Integrity constraints

The set of indices to be maintained for each relations
Security and authorization information for each relation

The physical storage structure of each relation on disk

11

Domain Types in SQL

char(n)

- Fixed length character string, with user-specified length n
varchar(n)

- Variable length character strings, with user-specified maximum length n
int

- Integer (a finite subset of the integers that is machine-dependent)
smallint

- Small integer (a machine-dependent subset of the integer domain type)
numeric(p, d)
- Fixed point number (Ef=£), with user-specified precision of p digits, with
d digits to the right of decimal point

- Numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 nor 0.32
can be stored exactly in a field of this type

12

Domain Types in SQL (Cont.)

real, double precision

- Floating point and double-precision floating point numbers, with machine-
dependent precision

float(n)
- Floating point number, with user-specified precision of at least n digits

null value

- Allowed in all domain types. Declaring an attribute to be not null prohibits
nhull values for that attribute.

Create domain construct in SQL-92 creates user-defined domain
types
- create domain person_name char(20) not null

13

Date/Time Types in SQL (Cont.)

date
- Dates, containing a (4 digit) year, month and date
- E.g., date '2020-9-30
time
- Time of day, in hours, minutes and seconds.
- E.g., time '09:25:30' time '09:25:30.75'
Timestamp

- date plus time of day
- E.g., timestamp '2020-9-30 09:25:30.75'

14

Date/Time Types in SQL (Cont.)

Interval: period of time

- Subtracting a date/time/timestamp value from another gives an

interval value, e.g., Interval '1' day

- Interval values can be added to date/time/timestamp values
Extract values of individual fields from date/time/timestamp
- E.g., extract (year from r.starttime)
Cast string types to date/time/timestamp

- E.g., cast <string-valued-expression> as date

15

Basic Schema Definition

An SQL relation is defined using the create tab/e command:

create tabler(A{ D,,A, D, ...,A,, D,,,
(integrity_constraint,), ..., (integrity_constraint;,))

— 1 is the name of the relation
- Each 4; is an attribute name in the schema of relation r
- D; is the data type of values in the domain of attribute A4;

Example:

create table branch
(branch_name char(15) not null,
branch_city char(30),
assets integer)

16

Integrity Constraints in Creating Tables

not null
primary key (44, ..., 4;,)
foreign key (Ayq, Aiz .., Arn) references s

check (P), where P is a predicate
create table instructor

(ID varchar(b),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8, 2),
primary key (ID),

check (salary >= 0))

Note: Primary key declaration on an attribute automatically ensures not null and unique in
SQL-92 onwards, needs to be explicitly stated in SQL-89

17

Basic Insertion and Deletion of Tuples

Newly created table is empty
Add a new tuple to table instructor

insert into instructor values (10211°, ‘Smith’, Computer Science’, 66000)

- Insertion fails if any integrity constraint is violated

Delete all tuples from table instructor

delete from instructor

18

Drop and Alter Table Constructs

The drop table command deletes all information (both schema and
tuples) about the dropped relation from the database

The alter table command is used to add attributes to an existing
relation
alter table r add A D
- All tuples in the relation are assigned null as the value for the new
attribute.

The alter table command can also be used to drop attributes of a
relation
alter table r drop A
- Dropping of attributes not supported by many databases

19

Schema Used in Examples

branch

account

branch—-name

depositor

customer

branch—city
assets

account—number <—|_

branch—name

balance

customer—name
account—number

» customer—name
>

customer—street
customer—city

loan

borrower

loan—number

branch-name
amount

customer—name
loan—-number

20

Schema Used in Examples

advisor

s_id
i_id

takes student
» ID <
D . name
course_id dept
d — p_name
sec 1t tot_cred
semester
year
grade
section course
b course_id » 3| course_id department
Lp| sec_id < 1 L
L»{ semester € ggz name _,—; Mne
> year < 5 Tof credits building
—| building e budget
| | room_no time_slot_id
time_slot_id [day
start_time
end_time
prereq instructor
classroom L course id D
| building | prereg_id name
»| room no dept_name
capacity teaches salary
ID
L_| course_id
L sec_id
semester
year

21

- QOverview of SQL

- SQL Data Definition

@ Basic Structure of SQL Queries
- Additional Basic Operations

» Set Operations

+ Null Values

* Aggregate Functions

 Nested Subqueries

* Modification of the Database

22

Basic Structure of SQL Queries

SQL is based on set and relational operations with certain
modifications and enhancements

A typical SQL query has the form:

select A, A, .., A
from r,rs, .., r,
where P

This query is equivalent to the relational algebra expression:
Hy, 4,,..4,(0p(riXreX --X1p))

The result of an SQL query is a relation

23

The Select Clause

The select clause lists the attributes desired in the result of a query
- corresponds to the projection operation of the RA (relational algebra)
E.g., find the names of all departments in the instructor relation
select dept_name
from instructor
In the "pure” RA syntax, the query would be:

I jept name(instructor)

- NOTE: SQL names are case insensitive, i.e. you can use capital or small letters

24

The select Clause (Cont.)

SQL allows duplicates in relations. To eliminate duplicates, insert
the keyword distinct after select

Find the names of all departments in the instructor relation, and
remove duplicates

select distinct dept_name
from instructor

The keyword all specifies that duplicates should not be removed by
default

select all dept_name
from instructor

25

The select Clause (Cont.)

An asterisk in the select clause denotes "all attributes”

select *
from instructor

The select clause can contain arithmetic expressions involving the
operation, +, —, * , and /, and operating on constants or attributes
of tuples

Example:
select ID, dept_name, salary » 1.1
from instructor

26

The where Clause

The where clause specifies conditions that the result must satisfy

- correspond to the selection predicate of the RA (relational
algebra)
- E.g., to find all loan numbers for loans made at the Perryridge branch

with loan amount greater than $1200.
select loan_number

from Joan
where branch_name = Perryridge’and amount > 1200

- Comparison results can be combined using the logical connectives and,
or, and not

- Comparison can be applied to results of arithmetic expressions

27

The where Clause (Cont.)

SQL includes a between comparison operator

- E.g. find the loan numbers of those loans with loan amount between
$90,000 and $100,000

select loan_number
from loan
where amount between 90000 and 100000

28

The from Clause

The from clause lists the relations involved in the query
- corresponds to the Cartesian product operation of the RA

E.g., find the Cartesian product borrowerxloan

select x
from borrower, loan

E.g., find the name, loan number and loan amount of all customers

having a loan at the Perryridge branch

select customer_name, borrower.loan_number, amount

from borrower, loan

where borrower.loan_number = loan.loan_number and
branch_name= Perryridge’

29

The Natural Join

select A, A,,..., A,

from r, natural joinr, natural join ..natural joinr,

where P;

select name, course _id

from instructor natural join teaches,

select name, title

from instructor natural join teaches, course
where teaches.course id = course.course_id.

instructor teaches course
ID D b course_id
name - course id "l title
dept_name - sec_id dept_name |
salary - semester credits

- year

Notice that we do not repeat those attributes that appear in the schemas of both relations; rather
they appear only once. Notice also the order in which the attributes are listed: first the attributes
common to the schemas of both relations, second those attributes unique to the schema of the first
relation, and finally, those attributes unique to the schema of the second relation.

30

course .
))) instructor teaches course
- (course_id, title, dept_name, credits) . D " conrse i
e 1 course_id " title
J dept_name |- sec_id dept_name |
. salary - semester credits
__ select name, title 1 year

8 A 3 GF
\

join ... using(...)

natural join of instructor and teaches
- (ID, name, dept_name, salary, course_id, sec_id, semester, year)

from instructor natural join teaches, course
where teaches.course_id= course.course_id; —
SERIBF

select name, title
from instructor natural join teaches natural join course;

select name, title
from (instructor natural join teaches) join course using (course_id);

31

- QOverview of SQL

- SQL Data Definition

- Basic Structure of SQL Queries
@ Additional Basic Operations

» Set Operations

+ Null Values

* Aggregate Functions

 Nested Subqueries

* Modification of the Database

32

The Rename Operation

+ The SQL allows renaming relations and attributes using the as clause:
old_name as new_name

- Find the name, loan_number and loan_amount of all customers; rename
the column name loan_number as loan_id:

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loan_number = loan.loan _number

33

Tuple Variables

Tuple variables are defined in the from clause via the use of the as
clause

Find the customer names and their loan numbers for all customers
having a loan at some branch
select customer_name, T.loan_number, S.amount

from borrower as T, loan as S
where T.loan_number = S.loan_number

Find the names of all branches that have greater assets than some

branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = Brooklyn’

34

String Operations

SQL includes a string-matching operator for comparisons on character

strings.
- percent (%): The % character matches any substring
- underscore (_): The _ character matches any character

like/not like: Find the names of all customers whose street includes (or not)
the substring "Main"
select customer_name

from customer
where customer _street like '7aMain’s’

Match the name "Main%"ENLEHNFHAHPEEDSRIBR, TEENX
like Main\ 7%’ escape '\’

"*" denote "all attributes” : select instructor.*
SQL supports a variety of string operations such as

- Concatenation (8EX) (using “||")

- converting from upper to lower case (and vice versa)

- finding string length, extracting substrings, etc.

35

Order the Display of Tuples

List in alphabetic order the names of all customers having a loan in
Perryridge branch

select distinct customer_name
from borrower, loan

where borrower.loan_number = loan.loan_number and
branch_name = Perryridge’
order by customer_name
We may specify desc for descending order or asc for ascending

order, for each attribute; ascending order is the default.
select *

from /loan
order by amount desc, loan-number asc

36

Where Clause Predicates

SQL includes a between\not between comparison operator

- Example: find the names of all instructors with salary between $90,000 and
$100,000

select name
from instructor
where salary between 90000 and 100000

Tuple comparison

select name, course_id
Y from instructor, teaches
FE where (instructor.ID, dept_name) = (teaches.ID, Biology’)
\
select name, course_id
from instructor, teaches

where instructor.ID=teaches.ID and dept_name='Biology’ -

+ QOverview of the SQL

- SQL Data Definition

- Basic Structure of SQL Queries
- Additional Basic Operations

@ Set Operations

 Null Values

* Aggregate Functions

 Nested Subqueries

* Modification of the Database

38

Set Operations

The set operations union, infersect, and except operate on relations
and correspond to the relational algebra operations U, N, —

Each of the above operations automatically eliminates duplicates

To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all

- Suppose a tuple occurs m times in r and n times in s, then, it occurs:
e m+ n times inr union all s
e min(m,n) times in r intersect all s

e max(0,m —n) times in r except all s

39

Set Operations

Find all customers who have a loan, an account, or both:
(select customer_name from depositor)
union [all]
(select customer_name from borrower)

Find all customers who have both a loan and an account.
(select customer_name from depositor)
intersect [all]

(select customer_name from borrower)

Find all customers who have an account but no loan.
(select customer_name from depositor)
except [all]

(select customer_name from borrower)

40

Duplicates

In relations with duplicates, SQL can define how many copies of
tuples appear in the result

Multiset versions of some of the relational algebra operators, given
multiset relations 1 and r;:

- 0g(r1): If there are c, copies of tuple t{ in rq, and t; satisfies
selections g4, then there are c; copies of t; in a4(ry)

— I 4(rq): For each copy of tuple t; in r{, there is a copy of tuple I1,(t,) in
I, (ry) where I1,(t,) denotes the projection of the single tuple t,

- 11x1y: If there are cq copies of tuple t; inr; and c, copies of tuple t; in
ry, there are c{xc, copies of the tuple tt, in r{xr;

41

Duplicates (Cont.)

E.g., suppose multiset relations r; (4, B) and r,(C) are as follows:

n={1a),Za} rn={2).03)Q303)

Then Iz () would be {(a), (a)}, while I1;(r;)*xr, would be
{(Cl, 2)) (a) 2)) (ar 3)7 (Cl, 3)) (Cl, 3)) (Cl, 3)}

SQL duplicate semantics:

select A;, A, ..., A,
from ri rs, .., r,
where P

is equivalent to the multiset version of the expression:

g, 4,,..4,(Gp(r1XreX --Xrp))

42

- QOverview of SQL

- SQL Data Definition

- Basic Structure of SQL Queries
- Additional Basic Operations

» Set Operations

= Null Values

* Aggregate Functions

 Nested Subqueries

* Modification of the Database

43

Null Values

It is possible for tuples to have a null value, signifies an unknown
value or that a value does not exist

The predicate /s nu// can be used to check for null values

select loan_number
from loan
where amount is null

The result of any arithmetic expression involving null is null
- E.g. 5+ null returns null

Aggregate functions simply ighore null values

44

Null Values and Three Valued Logic

Any comparison with null returns unknown
- Eg. 5<null or null<>null or null=null

Three-valued logic (={EiZ%8E) using the truth value unknown:

- OR: (unknown or true) = true, (unknown or false) = unknown
(unknown or unknown) = unknown

- AND: (true and unknown) = unknown, (false and unknown) = false,
(unknown and unknown) = unknown

- NOT: (not unknown) = unknown
- "P is unknown" evaluates to true if predicate P evaluates to unknown

Result of where clause predicate is treated as false if it evaluates
to unknown

45

Null Values and Aggregates

Calculate the sum of all loan amounts

select sum (amount)
from Joan
- Above statement ignores null amounts
- Result is null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

46

+ QOverview of the SQL

- SQL Data Definition

- Basic Structure of SQL Queries
- Additional Basic Operations

- Set Operations

 Null Values

& Aggregate Functions

 Nested Subqueries

* Modification of the Database

47

Aggregate Functions

- These functions operate on a set of values of a column of a
relation, and return a value

- avg: average value

- min: minimum value

- max: maximum value

- sum: sum of values

- count: number of values

48

Aggregate Functions (Cont.)

Find the average account balance at the Perryridge branch
select avg (balance)
from account
where branch_name = Perryridge’

Find the number of tuples in the customer relation
select count (*)
from customer

Find the number of depositors in the bank

select count (distinct customer_name)
from depositor

49

Aggregate Functions - Group By

Find the number of depositors for each branch
select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

Note: Attributes in select clause outside of aggregate functions
must appear in group by list

/*erroneous query*/

select dept_name, ID, avg(salary)
from instructor

group by dept_name

50

Aggregate Functions - Having Clause

At times, it is useful to state a condition that applies to groups rather
than to tuples.

E.g., find the names of all branches where the average account balance
is more than $1,200.

select branch_name, avg (balance)
from account

group by branch_name
having avg (balance) > 1200
Note

- predicates in the having clause are applied after the information of groups whereas
- predicates in the where clause are applied before forming groups

51

Aggregate Functions - Having Clause

E.g., find the average balance for each customer who lives in
Harrison and has at least three accounts

select depositor.customer_name, avg (balance)
from depositor, account, customer
where depositor.account_number=account.account_number

and depositer.customer_name=customer.customer_name
and customer_city=Harrison’

group by depositor.customer_name
having count(distinct depositor.account_number) >=3

52

- QOverview of SQL

- SQL Data Definition

- Basic Structure of SQL Queries
- Additional Basic Operations

» Set Operations

+ Null Values

* Aggregate Functions

« Nested Subqueries

* Modification of the Database

53

Nested Subqueries (HREFEif])

SQL provides a mechanism for the nesting of subqueries

A subquery is a select-from-where expression that is nested within
another query in the from clause

A common use of subqueries is to perform
- tests for set membership
- make set comparisons
- determine set cardinality (E£§)

54

Set Membership

- Find all customers who have both an account and a loan at the bank

select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)

« Find all customers who have a loan but do not have an account at the
bank

select distinct customer_name

from borrower

where customer_name not in (select customer_name
from depositor)

select distinct name
from instructor

where name not in ("Mozart’, 'Einstein’);
55

Set Membership (Cont.)

Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer_name
from borrower, loan
where borrower.loan_number=/oan./loan_number and
branch_name="Perryridge” and
(branch_name, customer_name) in
(select branch_name, customer_name
from depositor, account
where depositor.account_number =account.account_number)

56

Set Comparison

Find all branches that have greater assets than some branch located
in Brooklyn

select distinct T.branch _name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = Brooklyn’

Same query using >some clause

select branch_name
from branch
where assets > some
(select assets
from branch
where branch_city = Brooklyn’)

57

Definition of Some Clause

e F<comp>somer < 3t e rsuch that (F < comp > t), where
<comp> canbe: <, <, >, >, =, #

10
(5<some | B |)=true (read: 5 < some tuple in the relation)
6
(5¢< some —O—) = false (= some) —
However,
(5 = some .)= true (# some) s not in

0 _
(5#some | § |)= true (since 0 # 5)

58

Definition of all Clause

e F<comp>allr VvVt er(F<comp>1t)

0
(5<all | B |)= false
6
(5< all _16(7) = true (# all) = not in
However, (= all) =/in
4
(5=all [§])= false
(5 #all g) = true (since 5 # 4 and 5 # 6)

59

Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch_name
from branch
where assets > all

(select assets
from branch TR
where branch_city = Brooklyn’) HES

select dept_name

from instructor

group by dept_name

having avg (salary) >= all (select avg (salary)
from instructor

group by dept_name); 60

Test for Empty Relations

The exists construct returns the value TRUE if the argument
subquery is nonempty

- eXistsroeor =0
- notexistsrer=9

E.g., find all customers who have both an account & a loan at the bank

select customer_name
from borrower
where exists (
select *
from depositor
where depositor.customer_name = borrower.customer_name)

61

Test for Empty Relations

O Find all customers who have both an account and a loan at the bank

4 select customer_name
from borrower
where exists (
select *
from depositor
where depositor.customer_name = borrower.customer_name)

4 select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)

4 select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and (branch_name, customer_name) in
(select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number) 62

Test for Empty Relations (Cont.)

O Find all customers who have accounts at all branches located in Brooklyn

select distinct S.customer_name
from depositor as S
where not exists (
(select branch_name /* all branches in Brooklyn X */
from branch
where branch_city = Brooklyn’)
except
(select R branch_name /* finds all the branches at which customer
S.customer_name has an account 'Y */

from depositor as T, account as R
where T.account_number = R.account_number and
S.customer_name = T.customer_name))

Note: notexists X-Y)oX-Y=0oXCY
63

Test for Empty Relations (Cont.)

Write "relation A contains relation B as "not exists (B except A)."

E.g., find all students who have taken all courses offered by the
Biology department
select distinct S.ID, S.name
from student as S
where not exists ((select course_id
from course
where dept_name = 'Biology’)
except
(select T.course_id
from takes as T
where S.ID=T.ID))

64

Test for Absence of Duplicate Tuples

The unique construct tests whether a subquery has any duplicate tuples
in its result

E.g., find all customers who have at most one account at the Perryridge
branch

select T.customer_name

from depositor as T

where unigue (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and
R.account_number = account.account_number and
account.branch_name = Perryridge’)

65

LB E2009F RS IS —IKRIRIZ

select T.course_id

from course as T

where unique (select R.course_id
from section as R

= where T.course_id= R.course_id and
fit R.year = 2009);

select T.course_id
from course as T
where 1 2 (select count(R.course_id)
~— from section as R
where T.course_id= R.course_id and

R.year = 2009);
66

- Find all customers who have at least two accounts at the Perryridge
branch.

select distinct T.customer_name
from depositor T
where not unigue(
select R.customer_name
from account, depositor as R
where T.customer-name = R.customer_name and
R.account-number = account.account_number and
account.branch_name = Perryridge’)

select T.course_id
from course as T

where not unique (select R.course_id 3R 1E20094F

from section as R h iy
where T.course_id= R.course_id and gﬂ'\ Flﬁﬁll\ﬂgﬁ*i

R.year = 2009); 67

In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

Consider a person who needs to know a customer’s name, loan
humber and branch name, but has no need to see the loan amount.
This person should see a relation described by

(select customer_name, borrower.loan_number, branch_name

from borrower, loan

where borrower.loan_number = loan.loan_number)

A view provides a mechanism to hide certain data from the view of
certain users. Any relation that is not of the conceptual model but
is made visible to a user as a "virtual relation” is called a view.

68

A view is defined using the create view statement which has the
form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name is
represented by v.

Once a view is defined, the view nhame can be used to refer to the
virtual relation that the view generates

When a view is created, the query expression is stored in the
database; the expression is substituted into queries using the view

69

- A view consisting of branches and their customers
create view all_customer as

(select branch_name, customer_name

from depositor, account

where depositor.account_number =
account.account_number)

union

(select branch_name, customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number)

» Find all customers of the Perryridge branch
select customer_name
from all_customer

where branch_name = Perryridge’ -0

Derived Relations

Derived Relations

- E.g. Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch_name, avg (balance) Select branch_name, avg_balance

from account from (select branch_name, avg (balance)
group by branch_name from account
having avg (balance) > 1200 group by branch_name)

as result (branch_name, avq_balance)
where avq_balance > 1200

- Note: we do not need to use the having clause, since we compute the temporary
(view) relation result in the from clause, and the attributes of result can be
used directly in the where clause

71

Derived Relations (Cont.)

E.g. Find the maximum total balance across all branches

select max(tot_balance)
from (select branch_name, sum (balance)
from account
group by branch_name)
as branch_total (branch_name, tot_balance)

72

With Clause

With clause allows views to be defined locally to a query, rather
than globally. Analogous to procedures in a programming language

E.g. Find all accounts with the maximum balance.

with max_balance(value) as
select max(balance)
from account

select account_number
from account, max_balance
where account.balance = max_balance.value

73

Complex Query using with Clause

E.g. Find all branches where the total account deposit is greater
than the average of the total account deposits at all branches
with branch_total (branch_name, value) as
select branch_name, sum (balance)
from account
group by branch_name

with branch_total_avg (value) as
select avg (value)
from branch_total

select branch_name
from branch_total, branch_total_avg

where branch_total.value >= branch_total_avg.value b

Scalar Subquery

Scalar subquery(trE=—F&Eif) is used where a single value is expected

E.g. List all departments along with the number of instructors in each
department
select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department,

Note: Runtime error if subquery returns more than one tuple

75

- QOverview of SQL

- SQL Data Definition

- Basic Structure of SQL Queries
- Additional Basic Operations

» Set Operations

+ Null Values

* Aggregate Functions

 Nested Subqueries

@ Modification of the Database

76

Modification of the Database - Deletion

E.g. Delete all accounts at every branch located in Needham city

delete from account
where branch_name in (select branch_name

from branch
t where branch_city = Needham’)

delete from depositor
where account_number in
(select account_number
from branch, account
where branch_city = Needham’
and branch.branch_name = account.branch_name)

77

E.g. Delete the records of all accounts with balances below the
average at the bank ?
delete from account '
where balance < (select avg(balance)
from account)

Note: as we delete tuples from account, the average balance changes

Solution used in SQL:

- First, compute avg balance and find all tuples to delete

- Next, delete all tuples found above (without recomputing avg or retesting
the tuples)

78

Modification of the Database - Insertion

Add a new tuple to account

insert into account
values (A-9732, Perryridge’,1200)

or equivalently

insert into account (branch_name, balance, account_number)
values (Perryridge’, 1200, 'A-9732’)

Add a new tuple to account with balance setting to null

insert into account
values (A-777, Perryridge’, null)

79

Modification of the Database - Insertion

Provide as a gift for all loan customers of the Perryridge branch, i.e., a $200
saving account. Let the loan number serve as the account number for the new
saving account
insert into account
select loan_number, branch_name, 200
from loan
where branch_name = Perryridge’
insert into depositor
select customer_name, loan_number
from loan, borrower
where loan.loan_number = borrower.loan_number
and branch_name = Perryridge’

Note: The select from where statement is fully evaluated before any of its
results are inserted into the relation. Otherwise, queries like /nsert into

tablel select * from tableZ would cause problems
80

Modification of the Database - Updates

Increase all accounts with balances over $10,000 by 6%, and all
other accounts receive an increase of 5%.
- Worite two update statements:
update account
set balance = balance « 1.06
I where balance > 10000

update account
set balance = balance 1.05
where balance < 10000

The order is important
Can be done better using the case statement (next slide)

81

Case Statement for Conditional Updates

Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

case

upa'a fe account when pred; then result;

set balance = case when pred, then result,
when balance <= 10000 then balance *1.05 .

else balance * 106 when pred,, then result,
end else result

end

82

Review Terms

DDL:Data definition language + as clause
DML:Data manipulation language order by clause

with clause

Database schema
Database instance
Relation schema
Relation instance
Primary key
Foreign key

- Referencing relation
- Referenced relation

Query language
SQL query structure
- select clause
- from clause
- where clause
Natural join operation

Tuple variable
Set operations
- Union
- Intersect
- except
Null values
- Truth value "unknown"
Aggregate functions
- avg, min, max, sum, count
- group by
- having
Nested subqueries
Set comparisons
- {< < > =}some, all}
- exists
- unique

Scalar subquery

Database modification
- Deletion
- Insertion
- Updating

83

Further Reading
- Chapter 3

Exercises
- 3.8,39

- 3.15, 3.16, 3.17, 3.21

- Submission
- Deadline: 12:00pm, March 12, 2025

84

End of Lecture 3

85

