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Content of the Course 
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction 
• Part 1  Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model 
(data model, relational algebra) 

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate & 

Advanced SQL 
• Part 2  Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design 
based on E-R model 

– Lect. 6 (Mar. 27) - Ch7: Relational database 
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database 
design (Part II)

• Midterm exam:  Apr. 10

• Part 3  Data Storage & Indexing 
– Lect. 7 (Apr. 17) - Ch12/13: Storage 

systems & structures
– Lect. 8 (Apr. 24) - Ch14: Indexing

• Part 4  Query Processing & Optimization 
– May 1, holiday, no classes
– Lect. 9 (May 8) - Ch15: Query processing
– Lect. 10 (May 15 ) - Ch16: Query 

optimization 
• Part 5 Transaction Management

– Lect. 11 (May 22) - Ch17: Transactions  
– Lect. 12 (May 29) - Ch18: Concurrency 

control
– Lect. 13 (Jun. 5) - Ch19: Recovery system
– Lect. 14 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18
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University Database

Instructor table Student table
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University Database
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E-R Diagram for a Banking Enterprise

multi-valued 
attribute

derived attribute

Weak entity sets

account-branch
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The Banking Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a  multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• cust_banker = (customer_id, employee_id, type)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)
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Outline
F Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

• Database Design Process
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Data Normalization (规范化)
• The process of decomposing relations with anomalies to produce 

smaller and well-structured relations

• To validate and improve a logical design so that it satisfies certain 
constraints that avoid unnecessary duplication of data

• The problems of having duplication of data
– Waste of space
– Difficulty in consistency control
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Well-structured Relations
• A relation that contains minimal data redundancy and allows users to 

insert, delete, and update rows without causing data inconsistencies
• Goal is to avoid anomalies

– Insertion Anomaly – adding new rows forces user to create duplicate 
data

– Deletion Anomaly – deleting rows may cause a loss of data that would be 
needed for other future rows

– Modification Anomaly – changing data in a row forces changes to other 
rows because of duplication

General rule of thumb: a table should not pertain to 
more than one entity type
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Steps in 
Normalizatio

n
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Atomic Domains and First Normal Form 
• Domain is atomic if its elements are considered to be indivisible 

units 

– attributes do not have any substructure

• A relational schema R is in 1NF if the domains of all attributes of 

R are atomic

• Non-atomic values complicate storage and encourage redundant 

storage of data

– E.g. composite attribute/ multivalued attributes 
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First Normal Form (1NF, Cont.)
• Atomicity is actually a property of how the elements of the domain are used

– E.g. Strings would normally be considered indivisible 

• Suppose that students are given roll numbers which are strings of 

the form 0372001

– If the first four characters are extracted to find the department, the 

domain of roll numbers is not atomic

• Doing so is a bad idea: leads to encoding of information in application 

program rather than in the database
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First Normal Form (1NF)
• Requirements

– No multivalued attributes
• Making each value a separate tuple (Not good idea!)

– Every attribute value is atomic
• Splitting a composite attribute into multiple non-composite 

attributes  
• E.g.,

– Fig. 1 is not in 1st Normal Form (multivalued attributes) 
– Fig. 2 is in 1st Normal form

• All relations should be in 1st Normal Form



14

Figure 1

Figure 2

not in 1NF (multivalued attributes)

in 1NF
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Second Normal Form
• 2nd Normal Form

– 1NF 

– Every non-key attribute is fully functionally dependent on the 

ENTIRE primary key, i.e., no partial functional dependencies

• Partial functional dependency

– A function dependency in which one or more non-key attributes are 

functionally dependent on part (but not in all) of the primary key
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Functional Dependencies in Employee

EmpID CourseTitle DateCompletedSalaryDeptNameName

Dependency on the entire primary key

Dependency on only part of the primary key

EmpID, CourseTitle è DateCompleted
EmpID è Name, DeptName, Salary

As such, NOT in 2nd Normal Form!
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Decompose a Relation to 2nd Normal Form
• Decompose the relation into two separate relations

Both are full functional 
dependencies

EmpID SalaryDeptNam
e

Name

CourseTitle DateCompletedEmpID

Emp_t

Emp_Course_t
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Third Normal Form

• Requirements

– 2NF 

– No transitive dependencies 

• A transitive dependency is a functional dependency between two 

(or more) non-key attributes.
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Relation with Transitive Dependency

SALES relation
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Relation with Transitive Dependency

Cust_ID à Name
Cust_ID à Salesperson
Cust_ID à Region

All this is OK
(2nd NF)

BUT

Cust_ID à Salesperson à Region

Transitive dependency
(not 3rd NF)
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Relation with Transitive Dependency

Decompose the SALES relation
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Relations in 3NF

Now, there are no transitive dependencies…
Both relations are in 3rd NF

Cust_ID à Name

Cust_ID à Salesperson

Salesperson à Region
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Data Normalization
• 1st Normal Form

– No multivalued attributes, and every attribute value is atomic
– All relations are in 1st Normal Form

• 2nd Normal Form
– 1NF + every non-key attribute is fully functionally dependent on the 

ENTIRE primary key
– Decomposing the relation into two new relations

• 3rd Normal Form
– 2NF + no transitive dependencies
– Decomposing the relation into two new relations
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Other Normal Forms 
• Boyce-Codd NF

– All determinants are superkeys

• 4th NF

– No multivalued dependencies

• 5th NF 

– Join dependencies generalize MVDs

• Lead to the project-join normal form (PJNF), or the 5th NF

• A class of even more general constraints, leads to a normal form called 
domain-key normal form

• Problem with these generalized constraints:  are hard to reason with, and 
no set of sound and complete set of inference rules exists
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Boyce-Codd Normal Form

• Given relation schema R and FDs F, R is BCNF if for every FD 𝜶 →

𝜷 in F+(𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹), at least one of the following holds:

– 𝜶 → 𝜷 is trivial (i.e., 𝜷 ⊆ 𝜶)

– 𝜶 is a superkey for R
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Example
• R = (A, B, C), F = {A ® B, B ® C }, Key = {A}

– R is not in BCNF since B ® C but B is not the key 

• Decomposition R1 = (A, B),  R2 = (B, C)
– R1 and R2 in BCNF
– Lossless-join decomposition
– Dependency preserving
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Testing for BCNF
• To check if a non-trivial dependency 𝜶 → 𝜷 in F+ causes a violation 

of BCNF
– compute 𝜶! (the attribute closure of 𝜶), and 
– verify that it includes all attributes of R, i.e., a superkey of R

• Simplified test
– To check if a relation schema R is in BCNF, it suffices to check only 

the FDs F for violation of BCNF, rather than checking all dependencies 
in F+

– If none of the dependencies in F causes a violation of BCNF, then none 
of the dependencies in F+ will cause a violation of BCNF either
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Testing for BCNF (Cont.)
• Using only F is incorrect when testing a relation in a decomposition

of R
• E.g., consider R (A, B, C, D) with F = {A ® B, B ® C}

– Decompose R into R1(A,B) and R2(A,C,D) 
– Neither of the dependencies in F contain only attributes from (A,C,D)

so we might be mislead into thinking that R2 satisfies BCNF
– In fact, dependency A ® C in F+ shows that R2 is not in BCNF
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Testing Decomposition for BCNF
• To check if a relation 𝑹𝒊 in a decomposition of 𝑹 is in BCNF

– Either test 𝑹𝒊 for BCNF w.r.t. the restriction of F to 𝑹𝒊 (that is, all 
FDs in F+ that contain only attributes from 𝑹𝒊)

– or use the original set of dependencies F that hold on R, but with the 
following test:

• for every set of attributes 𝜶 ⊆ 𝑹𝒊, check that 𝜶! either includes no 
attributes of 𝑹𝒊 − 𝜶（要么不是决定属性）, or includes all attributes 
of 𝑹𝒊（要么是𝑅#超键）.

• If the condition is violated by some 𝜶 → 𝜷 in F, the FD 𝜶 → (𝜶! −
𝜶)⋂𝑹𝒊 can be shown to hold on 𝑹𝒊, and 𝑹𝒊 violates BCNF

• We use above dependency to decompose 𝑹𝒊
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BCNF Decomposition Algorithm

Note: each Ri is in BCNF, and decomposition is lossless-join
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Example
• Consider the relation scheme CTHRSG, where C=course, T=teacher, 

H=hour, R=room, S=student, and G=grade. The functional 
dependencies F we assume are:
– CS→G: each student has one grade in each course
– C→T: each course has one teacher
– HR→C: only one course can meet in a room at one time
– HS→R: a student can be in only one room at one time
– TH→R: a teacher can be in only one room at one time
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Decomposition Tree

CTHRSG
Key=HS

CS→G C→T
HR→C  HS→R

TH→R

CSG
Key=CS
CS→G

CTHRS
Key=HS

C→T
HR→C  HS→R

TH→R

CT
Key=C
C→T

CHRS
Key=HS

HR→C HS→R
CH→R

CHR
Key=HR或CH

HR→C或CH→R
CHS

Key=HS
HS→C

HSR
Key=HS
HS→R

or
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BCNF and Dependency Preservation

• R = (J, K, L), F = {JK ® L, L ® K}, two candidate keys = JK and JL
– R is not in BCNF

• Any decomposition of R will fail to preserve
– JK ® L 或者 L ® K

It is not always possible to get a BCNF decomposition that is 
dependency preserving
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Third Normal Form: Motivation
• There are some situations where 

– BCNF is not dependency preserving, and 
– Efficient checking for FD violation on updates is important

• Solution: define a weaker normal form, i.e., Third Normal Form
– Allows some redundancy
– But FDs can be checked on individual relations without computing a join
– There is always a lossless-join, dependency-preserving decomposition 

into 3NF
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Third Normal Form
• A relation schema R is in 3NF if for all 𝜶 → 𝜷 in F+ at least one of 

the following holds:
– 𝜶 → 𝜷 is trivial (i.e., 𝜷 ⊆ 𝜶)
– 𝜶 is a superkey for R
– Each attribute A in 𝜷 − 𝜶 is contained in a candidate key for R
(NOTE: each attribute may be in a different candidate key)

• If a relation is in BCNF, it is in 3NF (since in BCNF one of the first 
two conditions above must hold)

• Third condition is a minimal relaxation of BCNF to ensure 
dependency preservation
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3NF (Cont.)
• Example

– R = (J, K, L), F = {JK ® L, L ® K}, two candidate keys:  JK and JL
– R is in 3NF

JK ® L JK is a superkey/ candidate key
L ® K K is contained in a candidate key

– BCNF decomposition has  (JL) and (LK), and testing for JK ® L 
requires a join

• There is some redundancy in this schema
• Equivalent to example:

Banker-schema = (branch-name, customer-name, banker-name)
banker-name ® branch name,
branch-name, customer-name ® banker-name
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Testing for 3NF
• Optimization: Need to check only FDs in F
• Use attribute closure to check for each dependency 𝜶 → 𝜷, if 𝜶 is a 

superkey.
• If 𝜶 is not a superkey, we have to verify if each attribute in 𝜷 is 

contained in a candidate key of R
– this test is rather more expensive, since it involve finding candidate keys
– testing for 3NF has been shown to be NP-hard
– Interestingly, decomposition into 3NF can be done in polynomial time 
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3NF Decomposition Algorithm
Let Fc be a canonical cover for F;
i := 0;
for each FD a®b in Fc do
if none of the schemas Rj, 1 £ j £ i contains  a, b

then begin
i := i + 1;
Ri := a b

end
end
if none of the schemas Rj, 1 £ j £ i contains a 
candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end 
return (R1, R2, ..., Ri)

The algorithm ensures that 
each relation schema 𝑹𝒊 is 
in 3NF, and decomposition 
is dependency preserving 
and lossless-join
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3NF Decomposition Example 1
• R<U, F>, U={A,B,C,D,E}, F={AB®CDE, AC®BDE, B®C, C®D, B®E}

– R is in which NF? Decompose R into 3NF, and the decomposition is 
dependency preserving and lossless-join

1) Fc={AC®B, B®CE, C®D};
2) Find candidate keys: AC、AB; 

• key-attributes are: A、B、C;
• for C®D, non-key attribute D is partial dependent on key AC, so R ∉ 2NF, R∈1NF.

3) Decompose R into 3NF：
• So decompose R into (Same LHS attributes): 

– U1={A,B,C}, F1={AC → B }
– U2={B,C,E}, F2={B → CE }
– U3={C,D},   F3={C → D }

• 𝝆={R1<U1,F1>, R2<U2,F2>, R3<U3,F3>}, the decomposition is dependency preserving. And 
candidate keys AC、AB are all in U1, so a row can be found as a1, a2, a3, a4, a5 for testing 
lossless-join form, so 𝝆 is lossless-join.
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3NF Decomposition Example 2
• R<U, F>, U={A,B,C,D}, F={A®C, C®A, B®AC, D®AC, BD®A}. 

– R is in which NF? Decompose R into 3NF, and the decomposition is dependency 
preserving and lossless-join

1) Fc={A ® C, C ® A, B ® A, D ® A}
2) Candidate keys of R：BD; key-attributes: B、D;

• For B®A and D®A, non-key attribute A is partial dependent on key BD, so R∉2NF, R∈ 1NF
3) Decompose R into 3NF：

• All attributes exist in F, and does not exist X→A ∈ F and XA=U
• So decompose R into (Same LHS attributes):

– U1={A,C}, F1={ A ® C, C ® A }
– U2={A,B}, F2={ B ® A }
– U3={A,D}, F3={ D ® A }

• 𝝆={R1<U1,F1>, R2<U2,F2>, R3<U3,F3>}, the decomposition is dependency preserving. But 
candidate key BD is not in any Ui, so τ =ρ ∪ {R*<X,Fx>} = ρ ∪ {R4<{B,D},Φ>}, and τ is the 
decomposition that is dependency preserving and lossless-join

• (ABCD)->(AC), (ABD) -> (AC), (AB), (AD), (BD)
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Example
• Relation schema:

Banker-info-schema = (branch-name, customer-name, banker-name, office-
number)

• The FDs for this relation schema are:
banker-name ® branch-name, office-number
customer-name, branch-name ® banker-name

• The key is:
{customer-name, branch-name}
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Applying 3NF to Banker-info-schema
• The for loop in the algorithm causes us to include the following 

schemas in our decomposition:
Banker-office-schema = (banker-name, branch-name, office-number)
Banker-schema = (customer-name, branch-name, banker-name)

• Since Banker-schema contains a candidate key for 
Banker-info-schema, we are done with the decomposition process

• (branch-name, customer-name, banker-name, office-number) =》
(banker-name, branch-name, office-number) È (customer-name, 
branch-name, banker-name)
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Comparison of BCNF and 3NF
• It is always possible to decompose a relation into relations in 3NF 

and 
– the decomposition is lossless
– the dependencies are preserved

• It is always possible to decompose a relation into relations in BCNF
and 
– the decomposition is lossless
– it may not be possible to preserve dependencies.
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Comparison of BCNF and 3NF (Cont.)
• Example of problems due to redundancy in 3NF

– R = (J, K, L)
F = {JK ® L, L ® K}

• A schema that is in 3NF but not in BCNF has the problems of 
repetition of 
– information (e.g., the relationship l1, k1) 
– need to use null values (e.g., to represent the relationship l2, k2 where 

there is no corresponding value for J)

J
j1
j2
j3

null

L
l1
l1
l1
l2

K
k1

k1

k1

k2
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Design Goals
• Goal for a relational database design:

– BCNF
– Lossless join
– Dependency preservation

• If we cannot achieve this, we accept one of
– Lack of dependency preservation 
– Redundancy due to use of 3NF
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Design Goals (Cont.)

• Interestingly, SQL does not provide a direct way of specifying FDs 

other than superkeys.

– Can specify FDs using assertions, but they are expensive to test

• Even if we had a dependency preserving decomposition, using SQL 

we would not be able to efficiently test a FD whose left hand side 

is not a key.
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Testing for FDs Across Relations
• If decomposition is not dependency preserving, we can have an extra 

materialized view for each dependency 𝜶 → 𝜷 in Fc that is not 

preserved in the decomposition

• The materialized view is defined as a projection on 𝜶𝜷 of the join of 

the relations in the decomposition

• Many newer database systems support materialized views and 

database system maintains the view when the relations are updated.

– No extra coding effort for programmer
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Testing for FDs Across Relations (Cont.)
• The functional dependency 𝜶 → 𝜷 is expressed by declaring 𝜶 as a 

candidate key on the materialized view

• Checking for candidate key cheaper than checking 𝜶 → 𝜷

• BUT:

– Space overhead: for storing the materialized view

– Time overhead: Need to keep materialized view up to date when  relations 

are updated

– Database system may not support key declarations on materialized views



49

Outline
• Normalization （规范化） & Normal Forms (范式)

F Multivalued Dependencies* （多值依赖）

• Database Design Process
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Multivalued Dependencies
• There are database schemas in BCNF that do not seem to be 

sufficiently normalized 

• Consider a database 
classes(course, teacher, book)
such that (c, t, b)∈ classes means that t is qualified to teach c, and b is a 
required textbook for c

• The database is supposed to list for each course the set of teachers 
any one of which can be the course’s instructor, and the set of books, 
all of which are required for the course
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• There are no non-trivial functional dependencies and therefore the relation is in BCNF
• Insertion anomalies – i.e., if Sara is a new teacher that can teach database, two tuples 

need to be inserted
– (database, Sara, DB Concepts) 
– (database, Sara, Ullman)

course teacher book
database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi 
Jim 
Jim 

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Shaw
OS Concepts
Shaw

classes
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Multivalued Dependencies (Cont.)
• Therefore, it is better to decompose classes into:

course teacher
database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi 
Jim

teaches

course book
database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

We shall see that these two relations are in 4NF
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Multivalued Dependencies (MVDs)
• Let R be a relation schema and let 𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹 . The 

multivalued dependency 
𝜶 ↠ 𝜷

holds on R if in any legal relation r(R), for all pairs for tuples 𝒕𝟏 and 𝒕𝟐 in r
such that 𝒕𝟏 𝜶 = 𝒕𝟐[𝜶], there exist tuples 𝒕𝟑 and 𝒕𝟒 in r such that:    
𝒕𝟏 𝜶 = 𝒕𝟐 𝜶 = 𝒕𝟑 𝜶 = 𝒕𝟒 𝜶
𝒕𝟑 𝜷 = 𝒕𝟏 𝜷
𝒕𝟑 𝑹 − 𝜷 = 𝒕𝟐[𝑹 − 𝜷]
𝒕𝟒 𝜷 = 𝒕𝟐[𝜷]
𝒕𝟒 𝑹 − 𝜷 = 𝒕𝟏[𝑹 − 𝜷]

• Why called ‘’multivalued dependency’’?
– because a value of𝜶 determine multiple values of𝜷
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Why Called Multivalued Dependencies?
• When we say 𝜶 ↠ 𝜷, it means that a value of𝜶 determine multiple 

values of 𝜷

We have: course ↠ teacher,   course ↠ book
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MVD (Cont.)
Tabular representation of 𝜶 ↠ 𝜷

Functional dependencies: equality-generating dependencies 相等产生依赖
Multivalued dependencies: tuple-generating dependencies 元组产生依赖
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MVD (Cont.)
• Properties of MVD

– Symmetry: if X↠Y then X↠Z, here Z=U-X-Y

– Transitivity: if X ↠ Y, Y ↠ Z, then X ↠ Z-Y

– If X ↠ Y, X ↠ Z, then X ↠ YZ

– If X ↠ Y, X ↠ Z, then X ↠ Y∩Z

– If X ↠ Y, X ↠ Z, then X ↠ Y-Z, X ↠ Z-Y

– …
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Example

• Let R be a relation schema with a set of attributes that are 
partitioned into 3 nonempty subsets.

Y, Z, W
• We say that Y↠Z (Y multi-determines Z)

iff for all possible relations r(R)
– < 𝒚, 𝒛𝟏, 𝒘𝟏 >∈ 𝒓 and < 𝒚, 𝒛𝟐, 𝒘𝟐 >∈ 𝒓 then
– < 𝑦, 𝑧(, 𝑤) >∈ 𝑟 and < 𝑦, 𝑧), 𝑤( >∈ 𝑟

• Note that since the behavior of Z and W are identical it follows 
that Y↠ Z if Y↠W
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Example (Cont.)
• In our example:

– course ↠ teacher
– course ↠ book

• The above formal definition is supposed to formalize the notion that 
given a particular value of Y (course) it has associated with it a set 
of values of Z (teacher) and a set of values of W (book), and these 
two sets are in some sense independent of each other

• Note: 
– If Y→ Z  then  Y ↠ Z
– Indeed we have (in above notation) 𝒛𝟏 = 𝒛𝟐

The claim follows
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Use of Multivalued Dependencies
• We use MVDs in two ways: 

– 1. To test relations to determine whether they are legal under a given 

set of FDs and MVDs

– 2. To specify constraints on the set of legal relations.  We shall concern 

ourselves with relations that satisfy a given set of FDs and MVDs.

• If a relation 𝒓 fails to satisfy a given MVD, we can construct a 

relations 𝒓" that does satisfy the MVD by adding tuples to 𝒓
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Theory of MVDs
• From the definition of multivalued dependency, we can derive the 

following rule:
– If 𝜶 → 𝜷, then 𝜶 ↠ 𝜷; That is, every FD is also a MVD

• The closure D+ of D is the set of all FDs and MVDs logically implied 
by D. 

• We can compute D+ from D, using the formal definitions of FDs and 
MVDs.

• We can manage with such reasoning for very simple MVDs, which 
seem to be common in practice

• For complex MVDs, it is better to reason about sets of dependencies 
using a system of inference rules
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Fourth Normal Form
• A relation schema R is in 4NF w.r.t. a set D of FDs and MVDs if for 

all MVDs in D+ of the form 𝜶 ↠ 𝜷, where 𝜶 ⊆ 𝑹 and 𝜷 ⊆ 𝑹, at least 

one of the following hold:

– 𝜶 ↠ 𝜷 is trivial (i.e., 𝜷 ⊆ 𝜶 or 𝜶 ∪ 𝜷 = 𝑹)

– 𝜶 is a superkey for schema R

• If a relation is in 4NF it is in BCNF



62

Restriction of Multivalued Dependencies

• The restriction of  D to 𝑹𝒊 is the set 𝑫𝒊 consisting of

– All FDs in D+ that include only attributes of Ri

– All MVDs of the form

𝜶 ↠ 𝜷 ∩ 𝑹𝒊

where 𝜶 ⊆ 𝑹𝒊 and 𝜶 ↠ 𝜷 is in D+



63

4NF Decomposition Algorithm
result: = {R};
done := false;
compute D+;
Let 𝑫𝒊 denote the restriction of D+ to 𝑹𝒊
while (not done) 

if (there is a schema 𝑹𝒊 in result that is not in 4NF) then
begin

let 𝜶 ↠ 𝜷 be a nontrivial MVD that holds on 𝑹𝒊 such that 𝜶 → 𝑹𝒊
is not in 𝑫𝒊, and 𝜶 ∩ 𝜷 = ∅; 

result :=  (result - 𝑹𝒊) ∪ ((𝑹𝒊 -𝜷) ∪ (𝜶, 𝜷)); 
end

else done:= true;

Note: each 𝑹𝒊 is in 4NF, and decomposition is lossless-join
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Example

p R =(A, B, C, G, H, I)
F ={ A ®® B

B ®® HI
CG ®® H }

p R is not in 4NF since A ®® B and A is not a superkey for R
p Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I)  (R2 is not in 4NF)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I)  (R4 is not in 4NF)

p Since A ®® B and B ®® HI, A ®® HI, A ®® I
e) R5 = (A, I)  (R5 is in 4NF)
f)R6 = (A, C, G)  (R6 is in 4NF)
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Further Normal Forms
• Join dependencies generalize MVDs

– lead to project-join normal form (PJNF) (also called fifth normal form) 
投影-连接范式

• A class of even more general constraints, leads to a normal form 
called domain-key normal form (DKNF) 域-码范式

• Problem with these generalized constraints:  are hard to reason with, 
and no set of sound and complete set of inference rules exists, hence 
rarely used
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Outline
• Normalization （规范化） & Normal Forms (范式)

• Multivalued Dependencies* （多值依赖）

F Database Design Process
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Overall Database Design Process

• We have assumed schema R is given

– R could have been generated when converting E-R diagram to a set of 

tables

– R could have been a single relation containing all attributes that are of 

interest (called universal relation, 泛关系)

– Normalization breaks R into smaller relations and normal form
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ER Model and Normalization
• When an E-R diagram is carefully designed, identifying all entities 

correctly, the tables generated from the E-R diagram should not 
need further normalization

• However, in a real (imperfect) design there can be FDs from non-key 
attributes of an entity to other attributes of the entity

• E.g. employee entity with attributes department-number and 
department-address, and an FD 

department-number → department-address
– Good design would have made department an entity

• FDs from non-key attributes of a relationship set are possible, but 
rare
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Universal Relation Approach 泛关系
• Dangling tuples（悬浮元组）– Tuples that “disappear” in computing a 

join
– Let 𝒓𝟏(𝑹𝟏), 𝒓𝟐(𝑹𝟐), …, 𝒓𝒏(𝑹𝒏) be a set of relations
– A tuple 𝒕 of the relation 𝒓𝒊 is a dangling tuple if 𝒕 is not in the relation:

𝜫𝑹𝒊 ⋈ (𝒓𝟏 ⋈ 𝒓𝟐 ⋈ ⋯ ⋈ 𝒓𝒏)

• The relation 𝒓𝟏 ⋈ 𝒓𝟐 ⋈ ⋯ ⋈ 𝒓𝒏 is called a universal relation since it 
involves all the attributes in the “universe” defined by 𝑹𝟏 ∪ 𝑹𝟐 ∪⋯∪
𝑹𝒏

• If dangling tuples are allowed in the database, instead of decomposing 
a universal relation, we may prefer to synthesize a collection of 
normal form schemas from a given set of attributes.
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Universal Relation Approach
• Dangling tuples may occur in practical database applications

• They represent incomplete information 

• E.g., may want to break up information about loans into:

– (branch-name, loan-number)  

– (loan-number, amount) 

– (loan-number, customer-name)

• Universal relation would require null values, and have dangling tuples
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Universal Relation Approach (Cont.)
• A particular decomposition defines a restricted form of incomplete 

information that is acceptable in our database.
– Above decomposition requires at least one of customer-name, branch-name

or amount in order to enter a loan number without using null values
– Rules out storing of customer-name, amount without an appropriate loan-

number (since it is a key, it can't be null either!)
• Universal relation requires unique attribute names unique role 

assumption
• Reuse of attribute names is natural in SQL since relation names can be 

prefixed to disambiguate names
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Denormalization for Performance
• May want to use non-normalized schema for performance

– E.g., displaying customer-name along with account-number and balance
requires join of account with depositor

– Alternative 1:  Use denormalized relation containing attributes of 
account as well as depositor with all above attributes

• Faster lookup
• Extra space and extra execution time for updates
• Extra coding work for programmer and possibility of error in extra code

– Alternative 2: use a materialized view defined as
account ⋈ depositor

• Benefits and drawbacks same as above, except no extra coding work for 
programmer and avoids possible errors
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Other Design Issues
• Some aspects of database design are not caught by normalization
• Examples of bad database design to be avoided: Instead of 

earnings(company-id, year, amount), use 
– earnings-2000, earnings-2001, earnings-2002, etc., all on the schema 

(company-id, earnings).
• Above are in BCNF, but make querying across years difficult and needs a new 

table each year
– company-year(company-id, earnings-2000, earnings-2001, earnings-2002)

• Also in BCNF, but makes querying across years difficult and requires new 
attribute each year.

• Is an example of a crosstab (交叉表), where values for one attribute become 
column names

• Used in spreadsheets, and in data analysis tools
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Quiz
• Given the relational schema R<U, F>, U={A,B,C,D,E }, F={AC→BD, B

→ C, C → D, B → E}
a) Use Armstrong axioms and related rules to prove the functional 

dependency AC → E
b) Compute (A)+ and (AC)+

c) Find a canonical cover Fc of F
d) Find all candidate keys, and point out R is in which normal form
e) Decompose R into 3NF, which the decomposition is lossless-join and 

dependency preserving. 
f) Give related explanation or proof that the above decomposition is 

lossless-join and dependency preserving
g) *Decompose the relation into relations in BCNF
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Homework
• Further Reading

– Chapter 7
• Exercises

– 7.1, 7.2, 7.6
– Any two from (7.30， 7.31，7.32，7.33，7.34)

• Submission

– Deadline: April 16, 2025
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End of Lecture 6


