i

Introduction to Databases

PRSI

Lecture 7: Relational Database Design Theory (2)
THF: REBIEE OB (2)

E7KE / Shuigeng Zhou

BRAE: sgzhou@fudan.edu.cn RHE: admis.fudan.edu.cn/sgzhou

B

) -

H BRFENB LR B

Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 7 (A&pr. 17) - Ch12/13: Storage
. tems & structures
Part 1 Relational Databases 5YS , :
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 8 (Apr. 24) - Ch14: Indexing
(data model, relational algebra) - Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
- Lect. 4 (Mar. 13) - Ch4 & 5: Intermediate & - Lect. 9 (May 8) - Ch15: Query processing
Advanced SQL - Lect. 10 (May 15) - Ch16: Query
Par"r 2 Database Design optimization
Lect. 5 (Mar. 20) - Ch6: Database design . Par"l' 5 Transaction Management
based on E-R model Lect. 11 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database _
design (Part T) lggg;rrgIZ (May 29) - Ch18: Concurrency

- Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part IT)

Midterm exam: Apr. 10

- Lect. 13 (Jun. 5) - Ch19: Recovery system
- Lect. 14 (Jun. 5) - Course review

| Final exam: 13:00-15:00, Jun. 18

University Database

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | FEl Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Instructor table

00128
12345
19991
23121
44553
45678
54321
55739
70557
76543
76653
98765
98988

Zhang
Shankar
Brandt
Chavez
Peltier
Levy
Williams
Sanchez
Snow
Brown
Aoi
Bourikas
Tanaka

Comp. Sci.
Comp. Sci.
History
Finance
Physics
Physics
Comp. Sci.
Music
Physics
Comp. Sci.
Elec. Eng.
Elec. Eng.
Biology

ID name degt_name tot_cred

102
32
80

110
56
46
54
38

0
58
60
98

120

Student table

University Database

|

advisor

s_id
i_id

takes student
ID » D <
. name
course_id
—_ —{ dept_name
sec_id
tot_cred
semester
year
' grade
section course
course_id < course_id department
sec_id < title dept_name
semester < dept_name ™ buildi
year < ; credits ueamg
building time_slot budget
room_no time_slot_id
time_slot_id [] day
start_time
end_time
prereq instructor
classroom course id D
building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
L course_id
L sec_id
semester

year

E-R Diagram for a Banking Enterprise

brarnch-city
_assets T

branch

account-branch

loarn-brarichi

custormier-rnarnie

paymernt-date
payment-numbers | Cpayment-amouiit>
Crstomer ity

loar—
= [payment_]
payment N—

ts]

[Weak entity se

rriarnager
I < works—for v
worker

employee—11arie

multi-valued
attribute

employee

|

TR AR

il ‘3'"};é?1.'§21,:‘3’; =, start-date

[_@d attribute]

Isavings—acaount | I checking-accorert I

telephiorne-rirennber

irntterest-rate overdraft-armournt

The Banking Schema

branch = (branch_name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee_id, employee_name, telephone_number, start_date)

dependent_name = (employee_id, dname) (derived from a multivalued attribute)

account_branch = (account _number, branch_name)
Joan_branch = (loan_number, branch_name)

cust_banker = (customer_id, employee_id, type)
borrower = (customer _id, loan number)

depositor = (customer_id, account _number, access_date)
works_for = (worker_employee id, manager_employee_id)

payment =(loan_number payment_number payment_date,payment_amount)

savings_account = (account _number, interest_rate)
checking_account = (account_number, overdraft_amount)

= Normalization (H58ft) & Normal Forms (GExU)
Multivalued Dependencies* (Z{E{&i#)

Database Design Process

Data Normalization (#5844)

The process of decomposing relations with anomalies to produce
smaller and well-structured relations

To validate and improve a logical design so that it satisfies certain
constraints that avoid unnecessary duplication of data

The problems of having duplication of data
- Waste of space
- Difficulty in consistency control

Well-structured Relations

A relation that contains minimal data redundancy and allows users to
insert, delete, and update rows without causing data inconsistencies

Goal is to avoid anomalies

- Insertion Anomaly - adding new rows forces user to create duplicate
data

- Deletion Anomaly - deleting rows may cause a loss of data that would be
needed for other future rows

- Modification Anomaly - changing data in a row forces changes to other
rows because of duplication

General rule of thumb: a table should not pertain to
more than one entity type

Steps in
Normalizatio
n

Table with
multivalued
attributes

Fifth
normal
form

Remove
multivalued
attributes

Remove
partial
dependencies

Remove
transitive
dependencies

Remove remaining
anomalies resulting
from functional
dependencies

Remove
multivalued
dependencies

Remove
remaining
anomalies

10

Atomic Domains and First Normal Form

Domain is atomic if its elements are considered to be indivisible

units

- attributes do not have any substructure

A relational schema R is in INF if the domains of all attributes of

R are atomic

Non-atomic values complicate storage and encourage redundant

storage of data

- E.g. composite attribute/ multivalued attributes

11

First Normal Form (INF, Cont.)

Atomicity is actually a property of how the elements of the domain are used
- E.g. Strings would normally be considered indivisible

- Suppose that students are given roll numbers which are strings of
the form 0372001

- If the first four characters are extracted to find the department, the

domain of roll numbers is not atomic

* Doing so is a bad idea: leads to encoding of information in application

program rather than in the database

12

First Normal Form (INF)

Requirements

- No multivalued attributes
* Making each value a separate tuple (Not good ideal)

- Every attribute value is atomic

- Splitting a composite attribute into multiple non-composite
attributes

Eg..
- Fig. 1is not in 1st Normal Form (multivalued attributes)
- Fig. 2 is in 1st Normal form

All relations should be in 1st Normal Form

13

- Figure 1

not in INF (multivalued attributes)

Emp_ID Name Dept_Name Salary Course_Title Date_Completed
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X
urveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X
110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/200X
C++ 4/22/200X
190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000 SPSS 6/16/200X
Java 8/12/200X
Figure 2 in INF
EMPLOYEE2
Emp_ID Name Dept_Name Salary Course_Title Date_Completed
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X
110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/200X
110 Chris Lucero Info Systems 43,000 C++ 4/22/200X
190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000 SPSS 6/19/200X
150 Susan Martin Marketing 42,000 Java 8/12/200X

14

Second Normal Form

2" Normal Form
- INF

- Every non-key attribute is fully functionally dependent on the
ENTIRE primary key, i.e., no partial functional dependencies

Partial functional dependency

- A function dependency in which one or more non-key attributes are

functionally dependent on part (but not in all) of the primary key

15

Functional Dependencies in Employee

Dependency on the entire primary key

v
EmpID | CourseTitle| Name |DeptName |Salary ‘Da'reCompleted

Dependency on only part of the primary key

EmpID, CourseTitle & DateCompleted
EmpID = Name, DeptName, Salary

As such, NOT in 2" Normal Form!

16

Decompose a Relation to 2nd Normal Form

Decompose the relation intfo two separate relations

Both are full functional

l l l dependencies
Emp_t
EmpID | Name | DeptNam | Salary

’\ ©
Emp_Course_t

EmpID | CourseTitle| DateCompleted
A

17

Third Normal Form

Requirements
- 2NF

- No transitive dependencies

A transitive dependency is a functional dependency between two

(or more) non-key attributes.

18

Relation with Transitive Dependency

SALES

Cust_ID Name Salesperson Region
8023 Anderson Smith South
9167 Bancroft Hicks West
7924 Hobbs Smith South
6837 Tucker Hernandez East
8596 Eckersley Hicks West
7018 Arnold Faulb North

SALES relation

19

Relation with Transitive Dependency

v

Cust_ID

Name

Salesperson

Region

|

t

)

Cust_ID -> Name

Cust_ID - Salesperson

Cust_ID - Region

All this is OK

(2" NF)

Cust_ID > Salesperson - Region
Transitive dependency

BUT

(not 34 NF)

20

Relation with Transitive Dependency

SALEST

Cust_ID Name Salesperson
8023 Anderson Smith
9167 Bancroft Hicks
7924 Hobbs Smith
6837 Tucker Hernandez
8596 Eckersley Hicks
7018 Arnold Faulb

SPERSON

Salesperson Region
Smith South
Hicks West
Hernandez East
Faulb North

Decompose the SALES relation

21

Relations in 3NF

SPERSON

Salesperson Region Salesperson > Region
SALEST ~

Cust_ID Name Salesperson

Cust_ID - Name
Cust_ID - Salesperson

Now, there are no transitive dependencies...
Both relations are in 374 NF

22

Data Normalization

1st Normal Form
- No multivalued attributes, and every attribute value is atomic
- All relations are in 1st Normal Form

2nd Normal Form

- INF + every non-key attribute is fully functionally dependent on the
ENTIRE primary key

- Decomposing the relation into fwo new relations

3rd Normal Form
- 2NF + no transitive dependencies
- Decomposing the relation into fwo new relations

23

Other Normal Forms

Boyce-Codd NF
- All determinants are superkeys
4th NF

- No multivalued dependencies

5th NF

- Join dependencies generalize MVDs

* Lead to the project-join normal form (PINF), or the 5 NF

A class of even more general constraints, leads to a normal form called
domain-key normal form

Problem with these generalized constraints: are hard to reason with, and
no set of sound and complete set of inference rules exists

24

Boyce-Codd Normal Form

Given relation schema R and FDs F, R is BCNF if for every FD a —
B in F*(a < R and B < R), at least one of the following holds:

- a - Bis trivial (i.e., B S a)

- ais a superkey for R

25

R=(A,B,C),F={A—>B,B—>C} Key={A}
- Ris not in BCNF since B — C but B is not the key

Decomposition R, = (A, B), R, = (B, C)
- Ryand R; in BCNF

- Lossless-join decomposition

- Dependency preserving

26

Testing for BCNF

To check if a non-trivial dependency a — B in F* causes a violation
of BCNF

- compute a* (the attribute closure of «), and

- verify that it includes all attributes of R, i.e., a superkey of R

Simplified test
- To check if a relation schema R is in BCNF, it suffices to check only
the FDs F for violation of BCNF, rather than checking all dependencies
in F*
- If none of the dependencies in F causes a violation of BCNF, then none
of the dependencies in F* will cause a violation of BCNF either

27

Testing for BCNF (Cont.)

Using only F is incorrect when testing a relation in a decomposition
of R
E.g., considerR (A, B,C,D)withF={A - B,B - C}

- Decompose R into Ry(A,B) and Rz(A,C,D)

- Neither of the dependencies in F contain only attributes from (A,C,D)
so we might be mislead into thinking that R, satisfies BCNF

- Infact, dependency A — C in F* shows that R; is not in BCNF

28

Testing Decomposition for BCNF

To check if a relation R; in a decomposition of R is in BCNF

- Either test R; for BCNF w.r.t. the restriction of F to R; (that is, all
FDs in F* that contain only attributes from R;)

- or use the original set of dependencies F that hold on R, but with the
following test:

- for every set of attributes a € R;, check that a™ either includes no
attributes of R; — a (EAARREREIE) |, or includes all attributes
of R; (EXLZR#EHE) .

* If the condition is violated by some a — B inF, the FD a - (a* —
a)NR; can be shown to hold on R;, and R; violates BCNF

- We use above dependency to decompose R;

29

BCNF Decomposition Algorithm

resullt := {R};
done := false;
while (not done) do
if (there is a schema R; in resul/t that is not in BCNF)
then begin
let @« — [be a nontrivial functional dependency that holds
on R; such that a* does not contain R, anda N p = @;
result := (result — R,) U (R, — B) U (a, P);
end
else done := true;

Note: each R;is in BCNF, and decomposition is lossless-join

30

Consider the relation scheme CTHRSG, where C=course, T=teacher,
H=hour, R=room, S=student, and 6=grade. The functional
dependencies F we assume are:

- CS—G6: each student has one grade in each course

- C—T: each course has one teacher

- HR—C: only one course can meet in a room at one ftime
- HS—R: a student can be in only one room at one time
- TH—R: a teacher can be in only one room at one time

31

Decomposition Tree

CTHRSG
Key=HS
CS—6 C->T

HR—C HS—R

HR—C HS—R
CH—R

or

CHR
Key=HR=CH
HR—CE.CH—R

32

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is
dependency preserving

R=(J,K, L), F={JK—>L,L— K}, two candidate keys = JK and JL
- Ris not in BCNF

Any decomposition of R will fail to preserve
- JKo>LEEL->K

33

Third Normal Form: Motivation

There are some situations where
- BCNF is not dependency preserving, and
- Efficient checking for FD violation on updates is important

Solution: define a weaker normal form, i.e., Third Normal Form
- Allows some redundancy
- But FDs can be checked on individual relations without computing a join

- There is always a lossless-join, dependency-preserving decomposition
into 3NF

34

Third Normal Form

A relation schema R is in 3NF if for all a » B in F*at least one of
the following holds:
- a - fis trivial (i.e., B S a)
- ais a superkey for R
- Each attribute A in B — a is contained in a candidate key for R
(NOTE: each attribute may be in a different candidate key)

If a relation is in BCNF, it is in 3NF (since in BCNF one of the first
two conditions above must hold)

Third condition is a minimal relaxation of BCNF to ensure
dependency preservation

35

3NF (Cont.)

Example
- R=(J,K, L), F={JK—>L,L—> K}, two candidate keys: JK and JL
- Risin 3NF
JK— L JKis asuperkey/ candidate key
L > K Kis contained in a candidate key

- BCNF decomposition has (JL) and (LK), and testing for JK — L
requires a join
There is some redundancy in this schema
Equivalent to example:
Banker-schema = (branch-name, customer-name, banker-name)
banker-name — branch name,
branch-name, customer-name — banker-name

36

Testing for 3NF

Optimization: Need to check only FDs in F
Use attribute closure to check for each dependency a - B, if a isa
superkey.
If a is not a superkey, we have to verify if each attribute in g is
contained in a candidate key of R
- this test is rather more expensive, since it involve finding candidate keys
- testing for 3NF has been shown to be NP-hard
- Interestingly, decomposition info 3NF can be done in polynomial time

37

3NF Decomposition Algorithm

Let F, be a canonical cover for £,
/.= 0;
for each FD a—gin F,.do
if none of the schemas R;, 1 < j < /contains a, S
then begin
=17 +1;
R/' = ﬂ
end

end
if none of the schemas RJ-, 1</ </contains a
candidate key for R
then begin
ri=7+1;
R;:= any candidate key for R’
end
return (Ry, Rz, ..., R})

The algorithm ensures that
each relation schema R; is
in 3NF, and decomposition
is dependency preserving
and lossless-join

38

3NF Decomposition Example 1

R<U, F>, U={A,B,C,D,E}, F-{AB—>CDE, AC—>BDE, B—C, C—D, B—E}
- Ris in which NF? Decompose R intfo 3NF, and the decomposition is
dependency preserving and lossless-join
1) Fc={AC—B, B>CE, C—>D};
2) Find candidate keys: AC, AB;
- key-attributes are: A, B, C;
+ for C—D, non-key attribute D is partial dependent on key AC, so R ¢ 2NF, Re1NF.
3) Decompose R into 3NF:

+ So decompose R info (Same LHS attributes):
- U1={A,B,C}, F1={AC — B}
- U2={B,C,E}, F2={B — CE}
- U3={C,D}, F3={C > D}

- p={R1<U1F1>, R2<U2 F2>, R3<U3,F3>}, the decomposition is dependency preserving. And
candidate keys AC, AB are all in U1, so a row can be found as al, a2, a3, a4, a5 for testing
lossless-join form, so p is lossless-join.

39

3NF Decomposition Example 2

- R<U, P>, U={A B,C,D}, F={A—>C, C—>A, B>AC, D>AC, BD—>A).

- Ris in which NF? Decompose R into 3NF, and the decomposition is dependency
preserving and lossless- join

DFc={A—>C,C—>A B> A D> A}
2) Candidate keys of R: BD; key-attributes: B, D;

For B>A and D—A, non-key attribute A is partial dependent on key BD, so R¢2NF, Re INF
3) Decompose R into 3NF:

All attributes exist in F, and does not exist X—A € F and XA=U

So decompose R into (Same LHS attributes):
- UI={A,C},FI={A>C,C > A}
- U2={AB},F2={B > A}
- U3={AD},F3={D—> A}

« p={R1<U1F1>, R2<U2 F2>, R3<U3,F3>}, the decomposition is dependency preserving. But
candidate key BD is not in any Ui, so T =p U {R*<X,Fx>} = p U {R4<{B,D},®>}, and T is the
decomposition that is dependency preserving and lossless-join
(ABCD)->(AC), (ABD) -> (AC), (AB), (AD), (BD)

40

- Relation schema:

Banker-info-schema = (branch-name, customer-name, banker-name, office-
number)

« The FDs for this relation schema are:

banker-name — branch-name, office-number
customer-name, branch-name — banker-name

* The key is:
{customer-name, branch-name}

41

Applying 3NF to Banker-info-schema

The for loop in the algorithm causes us to include the following
schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name, office-number)
Banker-schema = (customer-name, branch-name, banker-name)

Since Banker-schema contains a candidate key for
Banker-info-schema, we are done with the decomposition process

(branch-name, customer-name, banker-name, office-number) =)
(banker-name, branch-name, office-number) o (customer-name,
branch-name, banker-name)

42

Comparison of BCNF and 3NF

It is always possible o decompose a relation into relations in 3NF
and

- the decomposition is lossless

- the dependencies are preserved

It is always possible o decompose a relation into relations in BCNF
and

- the decomposition is lossless

- it may not be possible to preserve dependencies.

43

Comparison of BCNF and 3NF (Cont.)

Example of problems due to redundancy in 3NF

- Rz(J, K, L) J |l Ll Kk
F={JK—>L,L—-K} T 7 1%
S | A A

Js | h| A

null| b | K

A schema that is in 3NF but not in BCNF has the problems of

repetition of
- information (e.g., the relationship /;, k)
- need to use null values (e.g., to represent the relationship /5, k> where

there is no corresponding value for J)

44

Design Goals

Goal for a relational database design:
- BCNF
- Lossless join
- Dependency preservation

If we cannot achieve this, we accept one of
- Lack of dependency preservation
- Redundancy due to use of 3NF

45

Design Goals (Cont.)

Interestingly, SQL does not provide a direct way of specifying FDs
other than superkeys.

- Can specify FDs using assertions, but they are expensive to test

Even if we had a dependency preserving decomposition, using SQL
we would not be able to efficiently test a FD whose left hand side
is not a key.

46

Testing for FDs Across Relations

If decomposition is not dependency preserving, we can have an extra

materialized view for each dependency a — B in F. that is not

preserved in the decomposition

The materialized view is defined as a projection on af of the join of

the relations in the decomposition

Many newer database systems support materialized views and
database system maintains the view when the relations are updated.

- No extra coding effort for programmer

47

Testing for FDs Across Relations (Cont.)

The functional dependency a — B is expressed by declaring a as a

candidate key on the materialized view
Checking for candidate key cheaper than checking a« — B
BUT:

- Space overhead: for storing the materialized view

- Time overhead: Need to keep materialized view up to date when relations

are updated

- Database system may not support key declarations on materialized views

48

Normalization (358{t) & Normal Forms (GEZV)
= Multivalued Dependencies* (Z{E{ki#)

Database Design Process

49

Multivalued Dependencies

There are database schemas in BCNF that do not seem to be
sufficiently normalized

Consider a database

classes(course, teacher, book)
such that (c, t, b)e classes means that #is qualified to teach ¢, and bis a
required textbook for ¢

The database is supposed to list for each course the set of teachers
any one of which can be the course's instructor, and the set of books,
all of which are required for the course

50

There are no non-trivial functional dependencies and therefore the relation is in BCNF

course teacher book

database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems | Avi OS Concepts
operating systems| Avi Shaw
operating systems | Jim OS Concepts
operating systems| Jim Shaw

classes

Insertion anomalies - i.e., if Sara is a new teacher that can teach database, two fuples
need to be inserted

- (database, Sara, DB Concepts)

(database, Sara, Ullman)

51

Multivalued Dependencies (Cont.)

Therefore, it is better to decompose classes into:

course teacher
database Avi
database Hank
database Sudarshan
operating systems | Avi
operating systems | Jim

teaches
course book
database DB Concepts
database Ullman

operating systems | OS Concepts
operating systems | Shaw

fext

We shall see that these two relations are in 4NF

52

Multivalued Dependencies (MVDs)

Let R be a relation schemaand leta S Rand B S R . The
multivalued dependency
a-»f

holds on R if in any legal relation r(R), for all pairs for tuples t; and ¢, inr

such that t{[a] = t;[a], there exist tuples t; and t4 in r such that:

tila] = t;[a] = tz[a] = t4]al

t3[B] = t1(B]

t3[R — B] = t;[R — B]

t4[B] = t2[B]

t4[R — B] = t4[R — B]

Why called "multivalued dependency”?

- because a value ofa determine multiple values of B

53

Why Called Multivalued Dependencies?

When we say a - B, it means that a value ofa determine multiple

values of B

course teacher book
database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems| Avi OS Concepts
operating systems | Avi Shaw
operating systems | Jim OS Concepts
operating systems | Jim Shaw
classes

We have: course - teacher,

course - book

MVD (Cont.)

Tabular representation of a »

o B R-a-p
tl ap...4a; ai+1...a]~ a]-+1...an
tz ap...4a; bi+1...b]' bj+1'°'bn>
t3 ap...4a; Eli+1...Cl]' bj+1°°'bn
t4 ap...a; bi+1...b]' 61]'+1...Eln

Functional dependencies: equality-generating dependencies #H%7=E {4t
Multivalued dependencies: tuple-generating dependencies Jt.2H ™A= #& #fi

55

MVD (Cont.)

Properties of MVD
- Symmetry: if X-»Y then X»Z, here Z=U-X-Y
- Transitivity: if X »Y,Y »Z, then X » Z-Y
- IfX>Y,X>Z, then X »YZ
- IfX>Y,X~>Z, then X »YnZ
- IfX>»Y,X>Z, thenX »Y-Z, X »Z-Y

56

Let R be a relation schema with a set of attributes that are
partitioned intfo 3 nonempty subsets.

Y, Z, W
We say that Y>Z (Y multi-determines Z)
iff for all possible relations r(R)
- <y,z;,wy >ET and < y,z,,w, >Er then
- <y, z;,w, >Er and < y,z,,w; >ET

Note that since the behavior of Z and W are identical it follows
that Y>» Z if Y>W

57

Example (Cont.)

In our example:

- course —» teacher

- course —» book
The above formal definition is supposed to formalize the notion that
given a particular value of Y (course) it has associated with it a set
of values of Z (teacher) and a set of values of W (book), and these
two sets are in some sense independent of each other
Note:

- IfY>Z then Y » Z

- Indeed we have (in above notation) z; = z,
The claim follows

58

Use of Multivalued Dependencies

We use MVDs in two ways:

- 1. To test relations to determine whether they are legal under a given
set of FDs and MVDs

- 2. To specify constraints on the set of legal relations. We shall concern
ourselves with relations that satisfy a given set of FDs and MVDs.

If arelation r fails to satisfy a given MVD, we can construct a

relations r’ that does satisfy the MVD by adding tuples to r

59

Theory of MVDs

From the definition of multivalued dependency, we can derive the
following rule:

- If a > B, then a » B; That is, every FD is also a MVD
The closure D* of D is the set of all FDs and MVDs logically implied
by D.

We can compute D* from D, using the formal definitions of FDs and
MVDs.

We can manage with such reasoning for very simple MVDs, which
seem to be common in practice

For complex MVDs, it is better to reason about sets of dependencies
using a system of inference rules

60

Fourth Normal Form

A relation schema R is in 4NF w.r.t. a set D of FDs and MVDs if for
all MVDs in D* of the form a - B, where ¢ € R and B S R, at least
one of the following hold:

- a-» Bis trivial (ie, S aoraupB =R)
- ais a superkey for schema R

If a relation is in 4NF it is in BCNF

61

Restriction of Multivalued Dependencies

The restriction of D to R; is the set D; consisting of

- All FDs in D* that include only attributes of Ri
- All MVDs of the form

a—»ﬁnRi

where a € R; and a - B is in D*

62

4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let D; denote the restriction of D* to R;
while (not done)
if (there is a schema R; in result that is not in 4NF) then
begin
let @ » B be a nontrivial MVD that holds on R; such that a — R;
isnotinD;,andan p = @;
result := (result - R;) U ((R; -B) U (a, B)):
end
else done:= true;

Note: each R; is in 4NF, and decomposition is lossless-join
63

0 R=(A,B ¢ 6, H,I)
F={A->— B
B—>— HI
C6 > H)

O Ris not in 4NF since A »— Band A is not a superkey for R
O Decomposition

a) R;= (A, B (R;is in 4NF)

b) R2=(A,C',6,H,1) (Rzis not in 4NF)
6@ R, = (C, 6, H) (R, is in 4NF)

dR,=(A C 6 1 (R, is not in 4NF)

SinceA>—»> Band B> HI, A»—-> HIL, A>—> I

e) Rs= (A, I) (R5is in 4NF)

f)Ré = (A, C, G) (R(, is in 4NF)

64

Further Normal Forms

Join dependencies generalize MVDs

- lead to project-join normal form (PINF) (also called fifth normal form)
B EESEIL

A class of even more general constraints, leads to a normal form
called domain-key normal form (DKNF) 1&-5355=

Problem with these generalized constraints: are hard to reason with,
and no set of sound and complete set of inference rules exists, hence
rarely used

65

Normalization (358{t) & Normal Forms (GEZV)
Multivalued Dependencies* (Z{E{&i#)

= Database Design Process

66

Overall Database Design Process

We have assumed schema R is given

- R could have been generated when converting E-R diagram to a set of
tables

- R could have been a single relation containing all attributes that are of

interest (called universal relation, ;Z%%)

- Normalization breaks R into smaller relations and normal form

67

ER Model and Normalization

When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not
need further normalization

However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

E.g. employee entity with attributes department-number and
department-address, and an FD
department-number — department-address

- Good design would have made department an entity

FDs from non-key attributes of a relationship set are possible, but
rare

68

Universal Relation Approach iZ2x&

Dangling tuples (&iZ7tfl) - Tuples that “disappear” in computing a
join

- Letr{(Ry), r2(R5), .., r,(R,) be a set of relations

- A tuple t of the relation r; is a dangling tuple if ¢ is not in the relation:

g, X (ry X1y X XTy)

The relation ry x ry x --- x 1, is called a universal relation since it
involves all the attributes in the "universe” defined by Ry UR, U --- U
Ry
If dangling tuples are allowed in the database, instead of decomposing
a universal relation, we may prefer to synthesize a collection of

normal form schemas from a given set of attributes.
69

Universal Relation Approach

Dangling tuples may occur in practical database applications
They represent incomplete information

E.g., may want to break up information about loans into:
- (branch-name, loan-number)
- (loan-number, amount)

- (loan-number, customer-name)

Universal relation would require null values, and have dangling tuples

70

Universal Relation Approach (Cont.)

A particular decomposition defines a restricted form of incomplete
information that is acceptable in our database.

- Above decomposition requires at least one of customer-name, branch-name
or amount in order to enter a loan number without using null values

- Rules out storing of customer-name, amount without an appropriate loan-
number (since it is a key, it can't be null either!)

Universal relation requires unique attribute names unique role
assumption

Reuse of attribute names is natural in SQL since relation names can be
prefixed to disambiguate names

71

Denormalization for Performance

May want to use non-normalized schema for performance

- E.g., displaying customer-name along with account-number and balance
requires join of account with depositor
- Alternative 1: Use denormalized relation containing attributes of
account as well as depositor with all above attributes
* Faster lookup
+ Extra space and extra execution time for updates
+ Extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as
account x depositor

* Benefits and drawbacks same as above, except no extra coding work for
programmer and avoids possible errors

72

Other Design Issues

- Some aspects of database design are not caught by normalization

- Examples of bad database design to be avoided: Instead of
earnings(company-id, year, amount), use
- earnings-2000, earnings-2001, earnings-2002, etc., all on the schema
(company-id, earnings).
*+ Above are in BCNF, but make querying across years difficult and needs a new
table each year
- company year(company-id, earnings-2000, earnings-2001, earnings-2002)

Also in BCNF, but makes querying across years difficult and requires new
attribute each year.

- Is an example of a crosstab (32X), where values for one attribute become
column names

* Used in spreadsheets, and in data analysis tools

73

Given the relational schema R<U, F>, U={A,B,C,D,E }, F={AC—-BD, B
-»C,C->D,B—-E}
a) Use Armstrong axioms and related rules to prove the functional
dependency AC - E
b) Compute (A)* and (AC)"
c) Find a canonical cover F. of F
d) Find all candidate keys, and point out R is in which normal form

e) Decompose R intfo 3NF, which the decomposition is lossless-join and
dependency preserving.

f) Give related explanation or proof that the above decomposition is
lossless-join and dependency preserving

g) *Decompose the relation into relations in BCNF

74

Further Reading

- Chapter 7

Exercises

-71,72,7.6

- Any two from (7.30, 7.31, 7.32, 7.33, 7.34)
Submission

- Deadline: April 16, 2025

75

End of Lecture 6

76

