
1复旦大学计算机科学技术学院

Lecture 3: Introduction to SQL
第3讲：结构化查询语言简介

周水庚 / Shuigeng Zhou

邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Outline of the Course
• Part 0: Overview

– Lect. 1 (Feb. 29) - Ch1: Introduction

 Part 1 Relational Databases
– Lect. 2 (Mar. 7) - Ch2: Relational model

(data model, relational algebra)
– Lect. 3 (Mar. 14) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 21) – Ch4/5: Intermediate

and Advanced SQL

• Part 2 Database Design
– Lect. 5 (Mar. 28) - Ch6: Database design

based on E-R model
– Apr. 4 (Tomb-Sweeping Day): no course
– Lect. 6 (Apr. 11) - Ch7: Relational database

design

• Midterm exam: Apr. 18

• Part 3 Data Storage & Indexing
– Lect. 7 (Apr. 25) - Ch12/13: Storage

systems & structures
– Lect. 8 (May 3 -> Apr. 28) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– Lect. 9 (May 10) - Ch15: Query processing
– Lect. 10 (May 17) - Ch16: Query

optimization

• Part 5 Transaction Management
– Lect. 11 (May 24) - Ch17: Transactions

– Lect. 12 (May 31) - Ch18: Concurrency
control

– Lect. 13 (Jun. 7) - Ch19: Recovery system

• Part 6 DB Systems & Course Review
– Lect. 14 (Jun. 14)

Final exam: 13:00-15:00, Jun. 26

3

University Database

Instructor table Student table

4

University Database

5

E-R Diagram for a Banking Enterprise

multi-valued
attribute

derived attribute

Weak entity sets

account-branch

6

The Banking Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• cust_banker = (customer_id, employee_id, type)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)

7

Outline

 Overview of SQL

• SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

• Null Values

• Aggregate Functions

• Nested Subqueries

• Modification of the Database

8

Overview of the SQL Query Language
• IBM SEQUEL (Structured English QUEry Language) language developed as

part of System R project at the IBM San Jose Research Laboratory in the
early 1970s

• Later SEQUEL was renamed to Structured Query Language (SQL)
because it was already trademarked by an airplane company

• ANSI (美国国家标准学会) and ISO (国际标准化组织) standard SQL:

– SQL-86

– SQL-89

– SQL-92

– SQL:1999, 2003, 2006, 2008

• Commercial systems offer most, if not all, SQL-92 features, plus varying
feature sets from later standards and special proprietary features

– Not all examples here may work on the particular system

9

Structured Query Language (SQL)

• SQL语言包含
– 数据定义语言（Data definition language，DDL)

• Relation schemas

• Integrity constraints

• View definition

• Authorization

– 数据操纵语言（Data manipulation language，DML)

• Queries

• Insertion, Deletion, Updates

• Transaction processing

10

Outline

• Overview of SQL

 SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

• Null Values

• Aggregate Functions

• Nested Subqueries

• Modification of the Database

11

Data Definition Language (DDL)

• Allows the specification of not only a set of relations but also

information about each relation, including:

– The schema for each relation

– The domain of values associated with each attribute

– Integrity constraints

– The set of indices to be maintained for each relations

– Security and authorization information for each relation

– The physical storage structure of each relation on disk

12

Domain Types in SQL
• char(𝒏)

– Fixed length character string, with user-specified length 𝑛
• varchar(𝒏)

– Variable length character strings, with user-specified maximum length 𝑛
• int

– Integer (a finite subset of the integers that is machine-dependent)
• smallint

– Small integer (a machine-dependent subset of the integer domain type)
• numeric(𝒑, 𝒅)

– Fixed point number (定点数), with user-specified precision of 𝑝 digits, with
𝑑 digits to the right of decimal point

– Numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 nor 0.32
can be stored exactly in a field of this type

13

Domain Types in SQL (Cont.)
• real, double precision

– Floating point and double-precision floating point numbers, with machine-
dependent precision

• float(𝒏)
– Floating point number, with user-specified precision of at least 𝑛 digits

• null value
– Allowed in all domain types. Declaring an attribute to be not null prohibits

null values for that attribute.

• Create domain construct in SQL-92 creates user-defined domain
types
– create domain person_name char(20) not null

14

Date/Time Types in SQL (Cont.)

• date
– Dates, containing a (4 digit) year, month and date

– E.g., date ‘2020-9-30’

• time
– Time of day, in hours, minutes and seconds.

– E.g., time ’09:25:30’ time ’09:25:30.75’

• Timestamp
– date plus time of day

– E.g., timestamp ‘2020-9-30 09:25:30.75’

15

Date/Time Types in SQL (Cont.)

• Interval: period of time

– Subtracting a date/time/timestamp value from another gives an

interval value, e.g., Interval ‘1’ day

– Interval values can be added to date/time/timestamp values

• Extract values of individual fields from date/time/timestamp

– E.g., extract (year from r.starttime)

• Cast string types to date/time/timestamp

– E.g., cast <string-valued-expression> as date

16

Basic Schema Definition

• An SQL relation is defined using the create table command:
create table 𝒓(𝑨𝟏 𝑫𝟏, 𝑨𝟐 𝑫𝟐, … , 𝑨𝒏 𝑫𝒏,

𝒊𝒏𝒕𝒆𝒈𝒓𝒊𝒕𝒚_𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝟏 , … , (𝒊𝒏𝒕𝒆𝒈𝒓𝒊𝒕𝒚_𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒌))

– 𝒓 is the name of the relation

– Each 𝑨𝒊 is an attribute name in the schema of relation 𝒓

– 𝑫𝒊 is the data type of values in the domain of attribute 𝑨𝒊

• Example:

create table branch
(branch_name char(15) not null,
branch_city char(30),
assets integer)

17

Integrity Constraints in Creating Tables
• not null

• primary key (𝑨𝟏, … , 𝑨𝒏)

• foreign key (𝑨𝒌𝟏, 𝑨𝒌𝟐… ,𝑨𝒌𝒏) references 𝒔

• check (𝑷), where 𝑷 is a predicate
create table instructor

(ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8, 2),
primary key (ID),
check (salary >= 0))

Note: Primary key declaration on an attribute automatically ensures not null and unique
in SQL-92 onwards, needs to be explicitly stated in SQL-89

18

Basic Insertion and Deletion of Tuples

• Newly created table is empty

• Add a new tuple to table instructor

insert into instructor values (‘10211', ‘Smith’, ‘Computer Science’, 66000)

– Insertion fails if any integrity constraint is violated

• Delete all tuples from table instructor

delete from instructor

19

Drop and Alter Table Constructs

• The drop table command deletes all information (both schema and
tuples) about the dropped relation from the database

• The alter table command is used to add attributes to an existing
relation

alter table r add A D

– All tuples in the relation are assigned null as the value for the new
attribute.

• The alter table command can also be used to drop attributes of a
relation

alter table r drop A
– Dropping of attributes not supported by many databases

20

Schema Used in Examples

21

Schema Used in Examples

22

Outline

• Overview of SQL

• SQL Data Definition

Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

• Null Values

• Aggregate Functions

• Nested Subqueries

• Modification of the Database

23

Basic Structure of SQL Queries
• SQL is based on set and relational operations with certain

modifications and enhancements

• A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

• This query is equivalent to the relational algebra expression:

𝜫𝑨𝟏,𝑨𝟐,…,𝑨𝒏(𝝈𝑷(𝒓𝟏 × 𝒓𝟐 ×⋯× 𝒓𝒎))

• The result of an SQL query is a relation

24

The Select Clause

• The select clause lists the attributes desired in the result of a query

– corresponds to the projection operation of the RA (relational algebra)

• E.g., find the names of all departments in the instructor relation

select dept_name

from instructor

• In the “pure” RA syntax, the query would be:

𝜫𝒅𝒆𝒑𝒕_𝒏𝒂𝒎𝒆(𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒐𝒓)

– NOTE: SQL names are case insensitive, i.e. you can use capital or small letters

25

The select Clause (Cont.)

• SQL allows duplicates in relations. To eliminate duplicates, insert

the keyword distinct after select

• Find the names of all departments in the instructor relation, and

remove duplicates

select distinct dept_name

from instructor

• The keyword all specifies that duplicates should not be removed by

default

select all dept_name

from instructor

26

The select Clause (Cont.)

• An asterisk in the select clause denotes “all attributes”

select *
from instructor

• The select clause can contain arithmetic expressions involving the
operation, +, −, ∗ , and ∕, and operating on constants or attributes
of tuples

• Example:

select ID, dept_name, salary ∗ 1.1

from instructor

27

The where Clause

• The where clause specifies conditions that the result must satisfy

– correspond to the selection predicate of the RA (relational
algebra)

– E.g., to find all loan numbers for loans made at the Perryridge branch
with loan amount greater than $1200.
select loan_number
from loan
where branch_name = ‘Perryridge’ and amount > 1200

– Comparison results can be combined using the logical connectives and,
or, and not

– Comparison can be applied to results of arithmetic expressions

28

The where Clause (Cont.)

• SQL includes a between comparison operator
– E.g. find the loan numbers of those loans with loan amount between

$90,000 and $100,000

select loan_number
from loan
where amount between 90000 and 100000

29

The from Clause

• The from clause lists the relations involved in the query
– corresponds to the Cartesian product operation of the RA

• E.g., find the Cartesian product 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟 × 𝑙𝑜𝑎𝑛
select ∗
from borrower, loan

• E.g., find the name, loan number and loan amount of all customers
having a loan at the Perryridge branch

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name=‘Perryridge’

30

The Natural Join
select 𝐴1, 𝐴2,…, 𝐴𝑛
from 𝑟1 natural join 𝑟2 natural join …natural join 𝑟𝑚
where P;

select name, title
from instructor natural join teaches, course
where teaches.course_id = course.course_id;

select name, course_id
from instructor natural join teaches;

Notice that we do not repeat those attributes that appear in the schemas of both relations; rather
they appear only once. Notice also the order in which the attributes are listed: first the attributes
common to the schemas of both relations, second those attributes unique to the schema of the first
relation, and finally, those attributes unique to the schema of the second relation.

31

join … using(…)
• natural join of instructor and teaches

– (ID, name, dept_name, salary, course_id, sec_id, semester, year)

• course
– (course_id, title, dept_name, credits)

结
果
不
等

结果相等

32

Outline

• Overview of SQL

• SQL Data Definition

• Basic Structure of SQL Queries

Additional Basic Operations

• Set Operations

• Null Values

• Aggregate Functions

• Nested Subqueries

• Modification of the Database

33

The Rename Operation

• The SQL allows renaming relations and attributes using the as clause:
old_name as new_name

• Find the name, loan_number and loan_amount of all customers; rename

the column name loan_number as loan_id:

select customer_name, borrower.loan_number as loan_id, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

34

Tuple Variables
• Tuple variables are defined in the from clause via the use of the as

clause

• Find the customer names and their loan numbers for all customers
having a loan at some branch

select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

• Find the names of all branches that have greater assets than some
branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = ‘Brooklyn’

35

String Operations
• SQL includes a string-matching operator for comparisons on character

strings.
– percent (%): The % character matches any substring
– underscore (_): The _ character matches any character

• like/not like: Find the names of all customers whose street includes (or not)
the substring “Main”

select customer_name
from customer
where customer_street like ‘%Main%’

• Match the name “Main%”要匹配的字符中有百分号的情况，需要转义
like ‘Main\%’； escape ‘\’

• “*” denote “all attributes” : select instructor.*
• SQL supports a variety of string operations such as

– Concatenation（串联） (using “||”)
– converting from upper to lower case (and vice versa)
– finding string length, extracting substrings, etc.

36

Order the Display of Tuples

• List in alphabetic order the names of all customers having a loan in
Perryridge branch

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name = ‘Perryridge’
order by customer_name

• We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

select *
from loan
order by amount desc, loan-number asc

37

Where Clause Predicates
• SQL includes a between\not between comparison operator

– Example: find the names of all instructors with salary between $90,000 and
$100,000

select name
from instructor
where salary between 90000 and 100000

• Tuple comparison

select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

select name, course_id
from instructor, teaches
where instructor.ID=teaches.ID and dept_name=‘Biology’

等价

38

Outline

• Overview of the SQL

• SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

 Set Operations

• Null Values

• Aggregate Functions

• Nested Subqueries

• Modification of the Database

39

Set Operations

• The set operations union, intersect, and except operate on relations
and correspond to the relational algebra operations ∪, ∩, −

• Each of the above operations automatically eliminates duplicates

• To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all

– Suppose a tuple occurs 𝒎 times in 𝒓 and 𝒏 times in 𝒔, then, it occurs:

• 𝒎 + 𝒏 times in 𝑟 union all 𝑠

• 𝐦𝐢𝐧(𝒎, 𝒏) times in 𝑟 intersect all 𝑠

• 𝐦𝐚𝐱(𝟎,𝒎 − 𝒏) times in 𝑟 except all 𝑠

40

Set Operations

• Find all customers who have a loan, an account, or both:
(select customer_name from depositor)
union [all]
(select customer_name from borrower)

• Find all customers who have both a loan and an account.
(select customer_name from depositor)
intersect [all]
(select customer_name from borrower)

• Find all customers who have an account but no loan.
(select customer_name from depositor)
except [all]
(select customer_name from borrower)

41

Duplicates

• In relations with duplicates, SQL can define how many copies of

tuples appear in the result

• Multiset versions of some of the relational algebra operators, given

multiset relations 𝒓𝟏 and 𝒓𝟐:

– 𝝈𝜽(𝒓𝟏): If there are 𝒄𝟏 copies of tuple 𝒕𝟏 in 𝒓𝟏, and 𝒕𝟏 satisfies

selections 𝝈𝜽, then there are 𝒄𝟏 copies of 𝒕𝟏 in 𝝈𝜽(𝒓𝟏)

– 𝜫𝑨(𝒓𝟏): For each copy of tuple 𝒕𝟏 in 𝒓𝟏, there is a copy of tuple 𝜫𝑨(𝒕𝟏)

in 𝜫𝑨(𝒓𝟏) where 𝜫𝑨(𝒕𝟏) denotes the projection of the single tuple 𝒕𝟏

– 𝒓𝟏 × 𝒓𝟐: If there are 𝒄𝟏 copies of tuple 𝒕𝟏 in 𝒓𝟏 and 𝒄𝟐 copies of tuple 𝒕𝟐
in 𝒓𝟐, there are 𝒄𝟏 × 𝒄𝟐 copies of the tuple 𝒕𝟏𝒕𝟐 in 𝒓𝟏 × 𝒓𝟐

42

Duplicates (Cont.)

• E.g., suppose multiset relations 𝑟1(𝐴, 𝐵) and 𝑟2(𝐶) are as follows:

𝑟1 = { 1, 𝑎 , (2, 𝑎)} 𝑟2 = { 2 , 3 , (3)}

• Then Π𝐵(𝑟1) would be { 𝑎 , (𝑎)}, while Π𝐵(𝑟1) × 𝑟2 would be
{ 𝑎, 2 , 𝑎, 2 , 𝑎, 3 , 𝑎, 3 , 𝑎, 3 , 𝑎, 3 }

• SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the expression:

𝜫𝑨𝟏,𝑨𝟐,…,𝑨𝒏(𝝈𝑷(𝒓𝟏 × 𝒓𝟐 ×⋯× 𝒓𝒎))

43

Outline

• Overview of SQL

• SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

 Null Values

• Aggregate Functions

• Nested Subqueries

• Modification of the Database

44

Null Values

• It is possible for tuples to have a null value, signifies an unknown
value or that a value does not exist

• The predicate is null can be used to check for null values

select loan_number
from loan
where amount is null

• The result of any arithmetic expression involving null is null

– E.g. 5 + null returns null

• Aggregate functions simply ignore null values

45

Null Values and Three Valued Logic

• Any comparison with null returns unknown
– E.g. 5 < null or null <> null or null = null

• Three-valued logic (三值逻辑) using the truth value unknown:
– OR: (unknown or true) = true, (unknown or false) = unknown

(unknown or unknown) = unknown

– AND: (true and unknown) = unknown, (false and unknown) = false,
(unknown and unknown) = unknown

– NOT: (not unknown) = unknown

– “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of where clause predicate is treated as false if it evaluates
to unknown

46

Null Values and Aggregates

• Calculate the sum of all loan amounts

select sum (amount)
from loan

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

47

Outline

• Overview of the SQL

• SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

• Null Values

 Aggregate Functions

• Nested Subqueries

• Modification of the Database

48

Aggregate Functions

• These functions operate on a set of values of a column of a
relation, and return a value

– avg: average value

– min: minimum value

– max: maximum value

– sum: sum of values

– count: number of values

49

Aggregate Functions (Cont.)
• Find the average account balance at the Perryridge branch

select avg (balance)
from account
where branch_name = ‘Perryridge’

• Find the number of tuples in the customer relation
select count (*)
from customer

• Find the number of depositors in the bank

select count (distinct customer_name)
from depositor

50

Aggregate Functions – Group By
• Find the number of depositors for each branch

select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

• Note: Attributes in select clause outside of aggregate functions
must appear in group by list

/*erroneous query*/
select dept_name, ID, avg(salary)
from instructor
group by dept_name

51

Aggregate Functions – Having Clause
• At times, it is useful to state a condition that applies to groups rather

than to tuples.

• E.g., find the names of all branches where the average account
balance is more than $1,200.

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

• Note
– predicates in the having clause are applied after the information of groups whereas

– predicates in the where clause are applied before forming groups

52

Aggregate Functions – Having Clause

• E.g., find the average balance for each customer who lives in
Harrison and has at least three accounts

select depositor.customer_name, avg (balance)
from depositor, account, customer
where depositor.account_number=account.account_number

and depositer.customer_name=customer.customer_name

and customer_city=‘Harrison’

group by depositor.customer_name
having count(distinct depositor.account_number) >=3

53

Outline

• Overview of SQL

• SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

• Null Values

• Aggregate Functions

 Nested Subqueries

• Modification of the Database

54

Nested Subqueries（嵌套子查询）

• SQL provides a mechanism for the nesting of subqueries

• A subquery is a select-from-where expression that is nested within
another query in the from clause

• A common use of subqueries is to perform

– tests for set membership

– make set comparisons

– determine set cardinality (基数)

55

Set Membership
• Find all customers who have both an account and a loan at the bank

select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)

• Find all customers who have a loan but do not have an account at the
bank

select distinct customer_name
from borrower
where customer_name not in (select customer_name

from depositor)

56

Set Membership (Cont.)
• Find all customers who have both an account and a loan at the

Perryridge branch

select distinct customer_name
from borrower, loan
where borrower.loan_number=loan.loan_number and

branch_name=“Perryridge” and
(branch_name, customer_name) in

(select branch_name, customer_name
from depositor, account
where depositor.account_number =account.account_number)

57

Set Comparison

• Find all branches that have greater assets than some branch located
in Brooklyn

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = ‘Brooklyn’

• Same query using >some clause

select branch_name
from branch
where assets > some

(select assets
from branch
where branch_city = ‘Brooklyn’)

58

Definition of Some Clause

• 𝑭 < 𝒄𝒐𝒎𝒑 > 𝐬𝐨𝐦𝐞 𝒓 ⇔ ∃ 𝒕 ∈ 𝒓 such that (𝑭 < 𝒄𝒐𝒎𝒑 > 𝒕), where
<comp> can be: <,≤,>,≥,=, ≠

0
5
6

(5< some) = true (read: 5 < some tuple in the relation)

0
5

) = false(5< some

0
5) = true(5 = some

0
5(5 some) = true (since 0 5)

(= some) in
However,
(some) not in

59

Definition of all Clause

• 𝑭 < 𝒄𝒐𝒎𝒑 > 𝒂𝒍𝒍 𝒓 ⇔ ∀𝒕 ∈ 𝒓 (𝑭 < 𝒄𝒐𝒎𝒑 > 𝒕)

0
5
6

(5< all) = false

4
6

(5 all) = true (since 5 4 and 5 6)

6
10) = true(5< all

4
5) = false(5 = all

(all) not in
However, (= all) in

60

Example

• Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch_name
from branch
where assets > all

(select assets
from branch
where branch_city = ‘Brooklyn’)

平均工资最高
的系

61

Test for Empty Relations
• The exists construct returns the value TRUE if the argument

subquery is nonempty

– exists 𝒓 ⇔ 𝒓 ≠ ∅

– not exists 𝒓 ⇔ 𝒓 = ∅

• E.g., find all customers who have both an account & a loan at the bank

select customer_name
from borrower
where exists (

select *
from depositor
where depositor.customer_name = borrower.customer_name)

62

Test for Empty Relations
 Find all customers who have both an account and a loan at the bank
✓ select customer_name

from borrower
where exists (

select *
from depositor
where depositor.customer_name = borrower.customer_name)

✓ select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)

✓ select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and (branch_name, customer_name) in

(select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number)

63

Test for Empty Relations (Cont.)
 Find all customers who have accounts at all branches located in Brooklyn

select distinct S.customer_name
from depositor as S
where not exists (

(select branch_name /* all branches in Brooklyn X */
from branch
where branch_city = ‘Brooklyn’)

except
(select R.branch_name /* finds all the branches at which customer

S.customer_name has an account Y */

from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

• Note: not exists 𝑿 − 𝒀 ⇔ 𝑿− 𝒀 = ∅ ⇔ 𝑿 ⊆ 𝒀

64

Test for Empty Relations (Cont.)
• Write “relation A contains relation B” as “not exists (B except A).”

• E.g., find all students who have taken all courses offered by the
Biology department

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = ‘Biology’)
except
(select T.course_id
from takes as T
where S.ID=T.ID))

65

Test for Absence of Duplicate Tuples
• The unique construct tests whether a subquery has any duplicate tuples

in its result

• E.g., find all customers who have at most one account at the Perryridge
branch

select T.customer_name

from depositor as T

where unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number and
account.branch_name = ‘Perryridge’)

66

Examples

等价

找出所有在2009年最多开设一次的课程

>=

67

Examples
• Find all customers who have at least two accounts at the Perryridge

branch.
select distinct T.customer_name
from depositor T
where not unique(

select R.customer_name
from account, depositor as R
where T.customer-name = R.customer_name and

R.account-number = account.account_number and
account.branch_name = ‘Perryridge’)

找出所有在2009年
至少开设两次的课程

68

Views
• In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the
database.)

• Consider a person who needs to know a customer’s name, loan
number and branch name, but has no need to see the loan amount.
This person should see a relation described by

(select customer_name, borrower.loan_number, branch_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

• A view provides a mechanism to hide certain data from the view of
certain users. Any relation that is not of the conceptual model but
is made visible to a user as a “virtual relation” is called a view.

69

View Definition

• A view is defined using the create view statement which has the
form

create view v as < query expression >
where <query expression> is any legal SQL expression. The view name is
represented by v.

• Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates

• When a view is created, the query expression is stored in the
database; the expression is substituted into queries using the view

70

Example
• A view consisting of branches and their customers

create view all_customer as
(select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number)
union

(select branch_name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

• Find all customers of the Perryridge branch
select customer_name
from all_customer
where branch_name = ‘Perryridge’

71

Derived Relations
• Derived Relations

– E.g. Find the average account balance of those branches where the
average account balance is greater than $1200.

– Note: we do not need to use the having clause, since we compute the temporary
(view) relation result in the from clause, and the attributes of result can be
used directly in the where clause

select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as result (branch_name, avg_balance)

where avg_balance > 1200

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

72

Derived Relations (Cont.)

• E.g. Find the maximum total balance across all branches

select max(tot_balance)

from (select branch_name, sum (balance)

from account

group by branch_name)

as branch_total (branch_name, tot_balance)

73

With Clause
• With clause allows views to be defined locally to a query, rather than

globally. Analogous to procedures in a programming language

• E.g. Find all accounts with the maximum balance.

with max_balance(value) as
select max(balance)
from account

select account_number
from account, max_balance
where account.balance = max_balance.value

74

Complex Query using with Clause
• E.g. Find all branches where the total account deposit is greater

than the average of the total account deposits at all branches
with branch_total (branch_name, value) as
select branch_name, sum (balance)
from account
group by branch_name

with branch_total_avg (value) as
select avg (value)
from branch_total

select branch_name
from branch_total, branch_total_avg
where branch_total.value >= branch_total_avg.value

75

Scalar Subquery

• Scalar subquery(标量子查询) is used where a single value is expected

• E.g. List all departments along with the number of instructors in
each department

select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors

from department;

• Note: Runtime error if subquery returns more than one tuple

76

Outline

• Overview of SQL

• SQL Data Definition

• Basic Structure of SQL Queries

• Additional Basic Operations

• Set Operations

• Null Values

• Aggregate Functions

• Nested Subqueries

 Modification of the Database

77

Modification of the Database – Deletion

• E.g. Delete all accounts at every branch located in Needham city
delete from account
where branch_name in (select branch_name

from branch
where branch_city = ‘Needham’)

delete from depositor
where account_number in

(select account_number
from branch, account
where branch_city = ‘Needham’
and branch.branch_name = account.branch_name)

78

Example
• E.g. Delete the records of all accounts with balances below the

average at the bank
delete from account
where balance < (select avg(balance)

from account)

• Note: as we delete tuples from account, the average balance changes

• Solution used in SQL:
– First, compute avg balance and find all tuples to delete

– Next, delete all tuples found above (without recomputing avg or retesting
the tuples)

79

Modification of the Database – Insertion
• Add a new tuple to account

insert into account
values (‘A-9732’, ‘Perryridge’,1200)

or equivalently

insert into account (branch_name, balance, account_number)
values (‘Perryridge’, 1200, ‘A-9732’)

• Add a new tuple to account with balance setting to null

insert into account
values (‘A-777’,‘Perryridge’, null)

80

Modification of the Database – Insertion
• Provide as a gift for all loan customers of the Perryridge branch, i.e., a $200

saving account. Let the loan number serve as the account number for the new
saving account

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = ‘Perryridge’

insert into depositor
select customer_name, loan_number
from loan, borrower
where loan.loan_number = borrower.loan_number

and branch_name = ‘Perryridge’

• Note：The select from where statement is fully evaluated before any of its
results are inserted into the relation. Otherwise, queries like insert into
table1 select * from table2 would cause problems

81

Modification of the Database – Updates
• Increase all accounts with balances over $10,000 by 6%, and all

other accounts receive an increase of 5%.
– Write two update statements:

update account
set balance = balance ∗ 1.06
where balance > 10000

update account
set balance = balance ∗ 1.05
where balance ≤ 10000

• The order is important

• Can be done better using the case statement (next slide)

82

Case Statement for Conditional Updates

• Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

update account
set balance = case
when balance <= 10000 then balance *1.05
else balance * 1.06

end

83

Review Terms
• DDL:Data definition language

• DML:Data manipulation language

• Database schema

• Database instance

• Relation schema

• Relation instance

• Primary key

• Foreign key
– Referencing relation

– Referenced relation

• Query language

• SQL query structure

– select clause

– from clause

– where clause

• Natural join operation

• as clause

• order by clause

• Tuple variable

• Set operations
– Union

– Intersect

– except

• Null values
– Truth value “unknown”

• Aggregate functions
– avg, min, max, sum, count

– group by

– having

• Nested subqueries

• Set comparisons
– {<,≤, >,≥}{some, all}

– exists

– unique

• with clause

• Scalar subquery

• Database modification
– Deletion

– Insertion

– Updating

84

Homework

• Further Reading
– Chapter 3

• Exercises

– 3.8, 3.9

– 3.15, 3.16, 3.17, 3.21

• Submission

– Deadline: 12:00pm, April 20, 2024

85

End of Lecture 3

