Introduction to Databases

KBRS

Lecture 11: Query Optimization
F113k: EwiRik

EKBE / Shuigeng Zhou

BRfk: sgzhou@fudan.edu.cn P#k: admis.fudan.edu.cn/sgzhou

-

H BRFEVHEIRH LR ERE

Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 8 (:A&pr'. 17) - Ch12/13: Storage
. tems & structures
Part 1 Relational Databases 5YS , .
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 9 (Apr. 24) - Ch14: Indexing
(data model, relational algebra) - Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
- Lect. 4 (Mar. 13) - Ch4 & 5: Intermediate & - Lect. 10 (May 8) - Ch15: Query processing
Advanced SQL - Lect. 11 (May 15) - Ch16: Query
Part 2 Database Design opTimization
Lect. 5 (Mar. 20) - Ché: Database design . qut 5 Transaction Management
based on E-R model Lect. 12 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database _
design (Part T) lgsﬂrgf (May 29) - Ch18: Concurrency
- . 7 (Apr. 3) - Ch7: Relational datab
lazgzrgz ((PGE.'; II)) h7: Relational database - Lect. 14 (Jun. 5) - Ch19: Recovery system

Midterm exam: Apr. 10 - Lect. 15 (Jun. B) - Course review

Final exam: 13:00-15:00, Jun. 18

University Database

aduvisor

s_id
i_id

FYY

I student
D » 1D <
e i name
couyse i id | dept_name
sec_id tot_cred
semester
year
. grade
section course
b course_id < _—E course_id department
Ly| sec id < title dept_name
—»| semester < dept_name > building
> year < ; credits
— | building time_slot budget
| | room_no time_slot id
time_slot_id [day
start_time
end_time
prereq instructor
classroom L1 biires 4l D
| building | prereq_id name
p| room no dept_name
capacity teaches salary
ID
L_{ course_id
L | sec id
semester

year

The Banking Schema

branch = (branch_name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee id, employee_name, telephone_number, start date)

dependent_name = (employee id, dname) (derived from a multivalued attribute)

account_branch = (account_number, branch_name)
loan_branch = (loan_number, branch_name)

borrower = (customer_id, loan_number)

depositor = (customer_id, account number, access_date)
cust_banker = (customer_id, employee_id, type)
works_for = (worker_employee_ id, manager_employee__id)

payment =(loan_number,payment number,payment_date, payment_amount)

savings_account = (account number, interest_rate)
checking_account = (account number, overdraft_amount)

@ Introduction

® Transformation of Relational Expressions
® Catalog Information for Cost Estimation
® Estimation of Statistics

® Dynamic Programming for Choosing Evaluation Plans

(terllférvse :;:;is application sopl:::rcsated database
web users) programmers (anlysis) administrators Users
use ‘write use use

licati licatis dministrati H H
ChieasD CimD D g Applications/tools

A A e
i - !
D b i //‘ com]l_:ulier e |—> DML queries I |DDL interpreter i
i |
atabase | &G i :
! program DML compiler |
SY s * e m ! object code and organizer !
I I

i query evaluation J i DBMS
Structure | e query processor |
: I
E buffer manager | | file manager I authorization transaction E
i and integrity manager !
! manager !
i
i I
i i
i I
1 I
i / storage manager E
L N T e - 1

——
—
disk storage Database
indices | I data dictionary |

data statistical data

Basic Steps in Query Processing

relational-algebra
expression

parser and
translator

query

query

output evaluation engine

<— execution plan

1. Parsing and translation
2. Optimization

3. Evaluation data statistics
about data

Introduction

- Alternative ways of evaluating a given query
- Equivalent expressions
- Different algorithms for each operation

» Cost difference between a good and a bad way of
evaluating a query can be enormous

* Need to estimate the cost of operations

- Depends critically on statistical information about relations
which the database must maintain

- Need to estimate statistics for intermediate results to
compute cost of complex expressions

Introduction (Cont.)

Relations generated by two equivalent expressions have the same set
of attributes and contain the same set of tuples, although their
attributes may be ordered differently.

IT

customer-name

o) branch-city=Brooklyn

branch /M\
account depositor

(a) Initial Expression Tree

Il cstomer-name
P
/
o branch-city=Brooklyn >4
/ \
branch account depositor

(b) Transformed Expression Tree

Introduction (Cont.)

- Eg: EIEEKHMusic RRMEHTRIR FLAN BRI RIERI R IR

X X

PN PN

10

Introduction (Cont.)

- HATITR: FREE N EENERNEALUNKIEEZ BRI T 7

11

Introduction (Cont.)

* Generation of query-evaluation plans for an expression
involves several steps:

1. Generating logically equivalent expressions(ZZ1: F=4iBiE F 58E%R
XRENHIRIATL). Use equivalence rules to transform an expression
into an equivalent one.

2. Annotating resultant expressions to get alternative query plans(z>3%2:

XTﬁﬁ;“EE’J%J_‘\ZU\T EATWRE, ;“ET FERIEIEHATIT L)
3. Choosing the cheapest plan based on estimated cost(zP&3: fhit&1

PATIRURIRAT, uﬂaﬁﬁm /NHIHRATIER)
- The overall process is called cost based optimization

12

® Introduction

@ Transformation of Relational Expressions
® Catalog Information for Cost Estimation
® Estimation of Statistics

® Dynamic Programming for Choosing Evaluation Plans

13

Relational Expression Transformation

Two relational algebra expressions are said to be equivalent if on
every legal database instance the two expressions generate the same

set of tuples
- Note: order of tuples is irrelevant
In SQL, inputs and outputs are multisets of tuples
An equivalence rule says that expressions of two forms are equivalent

- Can replace expression of first form by second, or vice versa

14

Equivalence Rules

Conjunctive selection operations can be deconstructed into a
sequence of individual selections.(FIlll: SEULEZE R D#EAEN
Iz ERIFS)

Ty ro, (E) =0, (04, (E))

Selection operations are commutative.(FiN2: FTIFEEimE X HAE)

0y (0, (E)) =0, (0, (E))

15

Equivalence Rules

Only the last in a sequence of projection operations is needed,
the others can be omitted. (FiIlI3: Z NEETHRERE—T
EHEVER, ERAIZERD

My, (M, (T (E))-) =TI (E) (ticts o cty)

Selections can be combined with Cartesian products and theta
joins. GHIN4: SEFFRFRIISH-RIRALLR, ERHaEa
1X 2 = 1 2

1 1 2 2 1 1 2 2

16

Equivalence Rules (Cont.)

Theta- join operations(and natural joins) are commutative.(FLNI5:
ERE B AL IRIE)

| 2= 2 1

Natural join operations are associative ({iNl6a: BSAEEHELESE)

- 1 2 33— 1 2 3

Theta joins are associative in the following manner, where 6,
involves attributes from only E, and E; ((iNl6b: EEEHE TS
EaeE, HP JHJiEK M HEMN)

- 1 1 2 2 33— 1 1 3 2 2 3

17

N5
#N6a:

Fneb :
h JHiP

Equivalence Rules (Cont.)

ERREIRE 1 o=
BRERRESSE 1
EERE NMUATIRIES:
A SHIEME

1

1

A

/N\

Y

M/M\ ‘
N

1 3 2

18

Equivalence Rules (Cont.)

The selection operation distributes over the theta join operation under the
following two conditions: (a)When all the attributes in 6, involve only the attributes

of one of the expressions (E;) being joined. (FI7: EEIE(FE FEMRNSEME T &
EHEDEE, o JEEEY PRIFMBEMER \:y&é*'—iiiiszﬁ’J«EEL_CZ—(ﬂﬂ 1))

o 1 2 - o 1 2

- (b) When 6 ; involves only the attributes of E; and 6, involves only the
GTTPIbUfCS Of Ez (b %LEI:?F 14: 1/\// 155)%:& Jij:#:/‘.l‘{q: 2/\// ZE,JEJHEHT)

1 2 1 2 = 1 1 2 2

AN

A
\

X

RN \

19

Equivalence Rules (Cont.)

« The projections operation distributes over the theta join operation as follows:(a)
if 0 involves only attributes from L; U L, GIM8: & ;. 9T .. HEHEF
& REBFETIEMTY EEREDEE o NRERFEN gk 1 FHIENE)

T, (B XLE)=(TT, (€)M, (TT, (E,)

(b) Consider a join E; [X| , E,. Let L; and L, be sets of attributes from E; and
E., respectively. Let L; be attributes of E; that are involved in join condition
0, but are not in L; U L,, and let L, be attributes of E, that are involved in
join condition 6, but are not in L; U L,. (b $3&EE , ., € 2 HIEEER
H PERE . PHEM € 2 BIEEREYE PERE . LPHEM)

HL1UL2(E1D<] 9E2):HL1ULZ((HL1UL3(E1>) X G(HLZUL4(E2>))

20

Equivalence Rules (Cont.)

Set union and intersection are commutative(set difference is not commutative). (Gil
M9 : EESHFFRIHmEHRE)
- 1 2= 2 1
- 1N 2= 2N 1
Set union and intersection are associative. (3#IM10: ESHNHFIHEESE)
- 1 2 3= 1 2 3
- 1N 2 N 3= 1N 2N 3
Selection distributes over U, N, -. (FRAM11: EWIFRENF. 2. EBEDER)

- 1 2 = 1 2
» similarly for and n in place of -
- 1= 2 = 1 = 2

+ similarly for n in place of -, but not for

Projection distributes over union. (FM12: IGE/IFHAIDEE)
- =0 4 n

21

Example 1: Pushing Selections

Eg.: Find the names of all instructors in the Music department, along
with the titles of the courses that they teach

1_Iname, title(Gdept_name= 'Music’(inStr' uctor X (teaches X 1_[course_id, title (COUI" Se))))

Transformation using rule 7a

1_Iname, title((o'dept_name= 'Music'(inStr uctor)) X (teaches X 1_[course_id, title (COUI" Se)))

22

Example 2: Multiple Transformations

Eg.: Find the names of all instructors in the Music department who have taught
a course in 2017, along with the titles of the courses that they taught

1_[name, title(Gdept_name: "Music"Ayear = 2017(i nstructor X (teaches X 1_Icour"se_id, title (COUI" Se))))
Rule 6a:
1_Iname, title(Gdept_name= "Music"Ayear = 2017((iﬂ$tf' uctor X teaCheS) X 1_Icour'se_id, title (COUI" Se)))

Rule 7a:

1_[name, title((cdept_name= "Music"Ayear = 2017(inStr uctor X teaches)) X 1_[course_id, title (COUI" Se))

Rulel & 7a:

1_[name, title((cdept_name= "Music” (inStr uctor) X Gyear = 2017 (teaches)) X Hcoursa_id, title (COUI" se))

23

Example 2: Multiple Transformations

24

Example 3: Multiple Transformations

Eg.: Find the names of all customers with an account at a Brooklyn branch
whose account balance is over $1000

- M — ” >1000
- CN: customer name, BC: branch city

Task: Give one equivalent expression with better execution performance

Performing the selection as early as possible reduces the size of the
relation to be joined.

25

Example 3: Multiple Transformations

Eg.: Find the names of all customers with an account at a Brooklyn branch
whose account balance is over $1000
— .

>1000

Task: Give one equivalent expression with better execution performance
One solution: Performing the selection as early as possible

M .

l_[customer-name

o branch-city=Brooklyn
A balance < 1000

X
/ \
branch

account

(a) Initial Expression Tree

N

depositor

>
I1

customer-name

X depositor

Y branch-city=Brooklyn O palance < 1000

branch account

(b) Tree After Multiple Transformations 26

Example 4: Projection Operation

chstomer'-name((cbr'anch-ciTy = "Brooklyn” (br'cmch) M accoun'l') NdePOSi*Of‘)

When we compute

(Gbr'anch-city = “Brooklyn” (branch) X account)
we obtain a relation whose schema is:

(branch-name, branch-city, assets, account-number, balance)

Push projections using equivalence rules 8a and 8b; eliminate unneeded
attributes from intermediate results to get:

I1 customer-name (
IT account-number (Gbranch-ci‘ry = “"Brooklyn” (bf‘ anch) Dﬁcco‘-mt) M dePOS’ tor))

27

Join Ordering

For three relations 1, »,and 3,

1 2 3= 1 2 3
If , sisquitelargeand ; 5 is small, we choose

1 2 3

so that we can compute and store a smaller femporary relation

28

Join Ordering (Cont.)

- Consider the expression
1_[name, title(cdept_namez "Music” (iHStr' uctor) X teaches) X Hcour'se_id, title (COUI" 56))))

- Solution A

- compute (teaches M I omse id title (course)) first, and join the result with
Odept_name= "Music” (instructor)

- the result of the first join is likely to be a large relation
- Solution B

- compute (Guept name= ‘music (instructor) X teaches) first
- only a small fraction of instructors are likely to be from the Music department

29

® Introduction

® Transformation of Relational Expressions
@ Catalog Information for Cost Estimation
® Estimation of Statistics

® Dynamic Programming for Choosing Evaluation Plans

30

Statistical Information for Relation

XREFRNFRITHER - Estimation
— : the number of tuples in a relation - Size
-t the number of blocks of - Distinct Values

: the size of a tuple of
: the blocking factor of ,i.e., the number of tuples that fit into one block

: tThe number of distinct values that appear in for attribute A, i.e.,
the size of

SC(A, r): selection cardinality of attribute A of relation r; average number
of records that satisfy equality on A.

If the tuples of are stored together physically in a file, then: = —

31

Catalog Information about Indices

e : the average fan-out(ESH) of internal nodes of index
- for tree-structured indices such as B*-tree
. : The number of levels in index
- i.e., the height of
- for a balanced tree index (such as B*-tree) on attribute A of relation ,

= , (HEfr ., : the number of distinct values)
- for a hash index, is 1
° : the number of lowest-level index blocks in

- i.e., the number of blocks at the leaf level of the index

32

Statistical Information for Examples

faccount= 20 (20 tuples of account fit in one block)
V(branch-name, account) = 50 (50 branches)
V(balance, account) = 500 (500 different balance values)
Naccount = 10000 (account has 10,000 tuples)
Assume the following indices exist on account:
- A primary, B*-tree index for attribute branch-name
- A secondary, B*-free index for attribute balance

— : the number of tuples in a relation
— i the number of tuples that fit into one block
- .+ the number of distinct values that appear in for attribute A

33

Measures of Query Cost

Recall that

- Typically, disk access is the predominant cost, and is also relatively

easy to be estimated

- The number of block transfers from disk is used as a measure of the

actual cost of evaluation

- It is assumed that all transfers of blocks have the same cost
Usually do not include the cost to write output to disk

We refer to the cost estimate of algorithm A as E,

34

® Introduction

® Transformation of Relational Expressions
® Catalog Information for Cost Estimation
@ Estimation of Statistics

® Dynamic Programming for Choosing Evaluation Plans

35

IR R A MET

Equality selection _

- RgBEIISS SR, WafGihEReaRikse /7 0 1 ad
- SC(A, r): number of records that will satisfy the selection

- [SC(A, r)/f.]: number of blocks that these records will occupy
- E.g. Binary search cost estimate becomes

E.a =[10g,(b,)]+ [SC(AW 1

r

Equality condition on a key attribute: SC(A,r)-1

36

SRR EE R A M

Equality selection _
- RIREEPNSSH, WehihaRsRe /7 0 1P d

Selections of the form . , case of o,.,(r) is symmetric

- Let denote the estimated number of tuples satisfying the condition. If

and ., are available in database catalog and we assume
that values are uniformly distributed (B985 %0)
® = , |f <
e = if =

- In absence of statistical information, is assumed to be /

— : the number of tuples in a relation
- .+ the number of distinct values that appear in for attribute A 37

SREIFIRMESRER AT

Selectivity (FRi%ZE) of a condition

- The probability that a fuple in the relation satisfies

- If is the number of tuples satisfying |, the selectivity of is givenby /
SEY:

- Estimated number of tuples:

thrHEN:

- Es’rima’reé number of tuples:
" *(l_(l_i)*(I—S—2>*---*(l—s—”)j
n, n, n,
BR: .

- Estimated number of tuples: —

38

EERREER A Mt

Cartesian product

— X contains tuples
Natural join
- If n = ,then is the same as %
- If n is a key for ,thena tuple of will join with at most one tuple
from , and size <

- If n is a foreign key in referencing , the number of tuples in
is exactly the same as the number of tuples in

Example: depositor customer
- customer-name in depositor is a foreign key referencing customer
- the result has exactly tuples

39

IR ELE R A Mt (58)

Catalog information for join examples:
x = 10,000, = 25, =10,000/25 = 400
x = 5,000, = 50, = 5,000/50 = 100
- V(customer-name, depositor) = 2,500, which implies that, on average,
each customer has two accounts
Example:
- = 5000 (customer-name in depositor is a foreign key referencing
customer, the result has exactly tuples)

— : the number of tuples in a relation

— i the number of tuples that fit into one block

— : the number of blocks of

— . the number of distinct values that appear in for attribute A 40

AR FEERAR UMb (58)

If n ={ }is not akey for or
- If we assume that every fuple in produces tuples in , The

number of tuples in is estimated to be:

- If the reverse is true, the estimate obtained will be:

- The lower of these two estimates is probably the more accurate one

x .+ the number of distinct values that appear in for attribute A
M1

IR FE R A IME T (5E)

+ Estimate the size of depositor customer without using the
information about foreign keys:

- V(customer-name, depositor) = 2500, = 5,000, and
V(customer-name, customer) = 10000, = 10,000

- The two estimates are
5000 * 10000/2500 = 20,000 and
5000 * 10000/10000 = 5000

* Choose the lower estimate, which is the same as the computation using
foreign keys

E .+ the number of distinct values that appear in for attribute A

42

Bt ESEREXIMET

3=

- estimated size of
BREE
- estimated size of = ,
ESIEE
- For unions/intersections of selections on the same relation: rewrite and
use size estimate for selections

\

- Egq., can be rewritten as
- For operations on different relations:
- estimated size of = size of + size of

- estimated size of n = min{size of , size of }
- estimated size of — =

- All the three estimates may be quite inaccurate, but provide upper bounds for

I
the sizes 3

BRFEREXRIMET (52)

- Outer join
- Estimated size of X = size of + size of

» Case of right outer join is symmetric

- Estimated size of XC = size of + size of + size of

44

Estimation of Distinct Values

- Selections:
- If forces to take a specified value:

- If A=3, , =1
- If forces to take on one of a specified set of values
. = number of specified values

+ eg., (A-1VA 3VA=4)
- If the selection condition is of the form op
- Estimated , = , , Where s is the selectivity of the selection.

- Inall the other cases: use approximate estimate of D
* More accurate estimate can be obtained using probability theory

45

Estimation of Distinct Values (Cont.)

- Joins:
- If all attributesin are from
- Estimated size of , - Co
- If contains attributes ; from and 5 from , then

* More accurate estimate can be obtained using probability theory

Projection
- Estimation of distinct values are straightforward for projections
- They are the same in as in

- Aggregation
- Formin and max , the number of distinct values can be estimated as
where denotes grouping attributes

- For other aggregates, assume all values are distinct, and use
46

® Introduction

® Transformation of Relational Expressions
® Catalog Information for Cost Estimation
® Estimation of Statistics

@ Dynamic Programming for Choosing Evaluation Plans

47

Enumeration of Equivalent Expressions

Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

Conceptually, generate all equivalent expressions by repeatedly executing
the following step until no more expressions can be found

- Given an expression E, if any sub-expression Es of E matches one side of
an equivalence rule, the optimizer generates a new expression where Es
is Transformed to match the other side of the rule

The above approach is very expensive in space and time.

- Space requirements reduced by sharing common sub-expressions for
equivalent expressions

- Time requirements are reduced by not generating all expressions

48

Evaluation Plan

* An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated

IT ., .siomer-name (sort to remove duplicates)

Dq (hash-join)

T T~

P (merge-join) depositor
Pipeline/ weliné"
S branch-ciry=Brooklyn O palance < 1000

(use index 1) (use linear scan)

branch account

49

Choice of Evaluation Plans

Must consider the interaction of evaluation techniques when choosing evaluation
plans.

- choosing the cheapest algorithm for each operation independently may not yield
best overall algorithm.

* merge-join may be costlier than hash-join, but may provide a sorted output
which reduces the cost for an outer level aggregation

- nested-loop join may provide opportunity for pipelining

Practical query optimizers incorporate elements of the following two broad
approaches:

1. Search all the plans and choose the best plan in a cost-based fashion
2. Uses heuristics to choose a plan

50

Cost-based Optimization

* To find the best join-order for

- Thereare 2 —1 !/ —1!(Refer foPractice Exercises 16.12) different join
orders for above expression
- With =3, the number is 12

1 2 3, 1 3 2, 2 3 1, 3 2 1
2 1 3, 2 3 1, 1 3 2, 3 1 2
3 1 2, 3 2 1), 1 2 3 2 1 3

- With =7, the number is 665280
- With =10, the number is greater than 17.6 billion

* No need to generate all the join orders
- Using dynamic programming
- The least-cost join order for any subset of { 1, ,, .., }is computed only once and

stored for future use
51

Cost-based Optimization

Given an example (

To compute (, there are 12 possible plans
Join the result of (with , there are 12 possible
plans

So there are totally 12*12=144 possible plans

On the other hand, we first compute (, find the best
plan, then join the result of the best plan of (with

Then the totaly plans are 12+12=24

52

Dynamic Programming in Optimization

To find best join tree for a set of relations

- Consider all possible plans of the form: — 1 where 1isany

non-empty subset of

- When the plan for any subset is computed, store it and reuse it when it
is required again, instead of re-computing it

- Recursively compute costs for joining subsets of to find the cost of

each plan. Choose the cheapest.

53

Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost #)
return bestplan[S]

bestplan[S].cost is assumed fo be
initialized to o if bestplan[S] has not
yet been computed.

if (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost

based on best way of accessing S
else for each non-empty subset S1 of S such that S1 =5

P1= findbestplan(S1)
P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = Pl.cost + P2.cost + cost of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = "execute Pl.plan;

execute P2.plan;

join results of P1 and P2 using A"

return bestplan[S]

Dynamic-programming algorithm

54

Left Deep Join Trees

Used by the System R optimizer

In left-deep join trees, the right-hand-side input for each join is
a relation, not the result of an infermediate join

VRN e TN
AN V2 NV
>< 4 ><] b r

VRN VAN

><] r3 rl r2
VRN
rl r2

(a) Left-deep Join Tree (b) Non-left-deep Join Tree

55

Cost of Optimization

- Complexity of dynamic programming

- The time complexity is . With n = 10, this number is 59000 instead of 17.6
billion

- Space complexity is
- Complexity for finding the best left-deep join tree

- Consider n alternatives with one relation as right-hand side input and the other
relations as left-hand side input.

- Using (recursively computed and stored) least-cost join order for each alternative
on left-hand-side, choose the cheapest of the n alternatives.

- If only left-deep trees are considered, time complexity of finding best join order
is

- Space complexity remains at

- Cost-based optimization is expensive, but worthwhile for queries on

large datasets (typical queries have small , generally < 10) .

Interesting Orders in Cost-based Optimization

- Consider the expression

 Aninteresting sort order is a particular sort order of tuples that
could be useful for a later operation.

- Generating the result of sorted on the attributes common with or
may be useful.
- Using merge-join to compute may be costlier, but may provide an

output sorted in an interesting order.

Not sufficient to find the best join order for each subset of the set
of given relations; must find the best join order for each subset,
for each interesting sort order of the join result for that subset

- Simple extension of earlier dynamic programming algorithms

- Usually, the number of interesting orders is quite small and doesn't affect
time/space complexity significantly

57

Heuristic Optimization

Cost-based optimization is expensive, even with dynamic programming.

Systems may use heuristics to reduce the number of choices that must
be made in a cost-based fashion.

Heuristic optimization transforms the query-tree by using a set of rules
that typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)
Perform projection early (reduces the number of attributes)

Perform most restrictive selection and join operations before other
similar operations.

Some systems use only heuristics, others combine heuristics with
partial cost-based optimization.

58

Steps in Typical Heuristic Optimization
. Deconstruct conjunctive selections into a sequence of single selection operations
(Equiv. rule 1.). O g ro, (E) = 0'01(0'02 (E))

. Move selection operations down the query tree for the earliest possible execution
(Equiv. rules 2, 7a, 7b, 11).

. Execute first those selection and join operations that will produce the smallest
relations (Equiv. rule 6).

. Replace Cartesian product operations that are followed by a selection condition by
join operations (Equiv. rule 4a).

. Deconstruct and move as far down the tree as possible lists of projection
attributes, creating new projections where needed (Equiv. rules 3, 8a, 8b, 12).

. Identify those subtrees whose operations can be pipelined, and execute them using
pipelining.

59

- Practice Exercises
- 16.5, 16.6, 16.7

- Exercises
- 16.16

. DDL: 12:59pm, May 21, 2025

60

End of Lecture 11

61

