
1复旦大学计算机科学技术学院

Lecture 11: Query Optimization
第11讲：查询优化

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate &

Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 8 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no class
– Lect. 10 (May 8) - Ch15: Query processing
– Lect. 11 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions
– Lect. 13 (May 29) - Ch18: Concurrency

control
– Lect. 14 (Jun. 5) - Ch19: Recovery system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

University Database

4

The Banking Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• cust_banker = (customer_id, employee_id, type)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)

5

Outline

 Introduction

l Transformation of Relational Expressions

l Catalog Information for Cost Estimation

l Estimation of Statistics

l Dynamic Programming for Choosing Evaluation Plans

6

Database
System

Structure

Database

DBMS

Applications/tools

Users

7

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

8

Introduction
• Alternative ways of evaluating a given query

– Equivalent expressions
– Different algorithms for each operation

• Cost difference between a good and a bad way of
evaluating a query can be enormous

• Need to estimate the cost of operations
– Depends critically on statistical information about relations

which the database must maintain
– Need to estimate statistics for intermediate results to

compute cost of complex expressions

9

Relations generated by two equivalent expressions have the same set
of attributes and contain the same set of tuples, although their
attributes may be ordered differently.

Introduction (Cont.)

10

Introduction (Cont.)
• Eg：查询找出Music系所有教师的名字以及每位教师所教授课程的名称

11

Introduction (Cont.)
• 执行计划：需明确每个运算应使用的算法以及运算之间的执行如何协调

12

• Generation of query-evaluation plans for an expression
involves several steps:
1. Generating logically equivalent expressions(步骤1：产生逻辑上与给定表

达式等价的表达式). Use equivalence rules to transform an expression
into an equivalent one.

2. Annotating resultant expressions to get alternative query plans(步骤2：
对所产生的表达式以不同方式标注，产生不同的查询执行计划)

3. Choosing the cheapest plan based on estimated cost(步骤3：估计每个
执行计划的代价，选择估计代价最小的执行计划)

• The overall process is called cost based optimization

Introduction (Cont.)

13

Outline

l Introduction

 Transformation of Relational Expressions

l Catalog Information for Cost Estimation

l Estimation of Statistics

l Dynamic Programming for Choosing Evaluation Plans

14

Relational Expression Transformation
• Two relational algebra expressions are said to be equivalent if on

every legal database instance the two expressions generate the same

set of tuples

– Note: order of tuples is irrelevant

• In SQL, inputs and outputs are multisets of tuples

• An equivalence rule says that expressions of two forms are equivalent

– Can replace expression of first form by second, or vice versa

15

Equivalence Rules
• Conjunctive selection operations can be deconstructed into a

sequence of individual selections.(规则1：合取选择运算可分解为单个
选择运算的序列)

• Selection operations are commutative.(规则2：选择运算满足交换律)

))(()(
2121

EE   

))(())((
1221

EE   

16

Equivalence Rules
• Only the last in a sequence of projection operations is needed,

the others can be omitted.（规则3：多个连续投影中只有最后一个
运算是必需的，其余可忽略）

• Selections can be combined with Cartesian products and theta
joins.（规则4：选择操作可以与笛卡尔积以及�连接相结合）

�� �1 × �2 = �1⋈��2

��1 �1⋈�2�2 = �1⋈�1∧�2�2

)())))((((
121
EE ttntt   (t1t2  …tn)

17

Equivalence Rules (Cont.)
• Theta-join operations(and natural joins) are commutative.(规则5：�

连接满足交换律)
– �1⋈��2 = �2⋈��1

• Natural join operations are associative (规则6a：自然连接满足结合律)
– �1 ⋈ �2 ⋈ �3 = �1 ⋈ �2 ⋈ �3

• Theta joins are associative in the following manner, where 2
involves attributes from only E2 and E3 (规则6b：�连接满足下列方式的
结合律，其中�2只涉及�2和�3的属性)
– �1⋈�1�2 ⋈�2∧�3�3 = �1⋈�1∧�3 �2⋈�2�3

18

Equivalence Rules (Cont.)
• 规则5：�连接满足交换律 �1⋈��2 = �2⋈��1

• 规则6a：自然连接满足结合律 �1 ⋈ �2 ⋈ �3 = �1 ⋈ �2 ⋈ �3
• 规则6b：�连接满足下列方式的结合： �1⋈�1�2 ⋈�2∧�3�3 = �1⋈�1∧�3 �2⋈�2�3 ，其

中�2只涉及�2和�3的属性

19

Equivalence Rules (Cont.)
• The selection operation distributes over the theta join operation under the

following two conditions: (a)When all the attributes in 0 involve only the attributes
of one of the expressions (E1) being joined. (规则7：选择操作在下面两个条件下对�连
接满足分配律，a. 当选择条件�0中的所有属性只涉及参与连接的表达式之一(如�1)时)

��0 �1⋈��2 = ��0 �1 ⋈��2

– (b) When  1 involves only the attributes of E1 and 2 involves only the
attributes of E2.(b. 当选择条件�1只涉及�1的属性，选择条件�2只涉及�2的属性时)

��1∧�2 �1⋈��2 = ��1 �1 ⋈� ��2 �2

20

Equivalence Rules (Cont.)
• The projections operation distributes over the theta join operation as follows:(a)

if  involves only attributes from L1  L2 （规则8：令�1、�2分别代表�1、�2的属性子
集，投影操作在下列条件下对�连接满足分配律: a. 如果连接条件�只涉及�1 ∪ �2中的属性）

(b) Consider a join E1  E2. Let L1 and L2 be sets of attributes from E1 and
E2, respectively. Let L3 be attributes of E1 that are involved in join condition
, but are not in L1  L2, and let L4 be attributes of E2 that are involved in
join condition , but are not in L1  L2. （b. 针对连接�1⋈��2 ，令�3是�1出现在连接条
件�中但不在�1 ∪ �2中的属性，令�4是�2出现在连接条件�中但不在�1 ∪ �2中的属性）

1 2 1 2L ∪L 1 θ 2 L 1 θ L 2
∏ (E E)=(∏ (E)) (∏ (E))

1 2 1 2 1 3 2 4L ∪L 1 θ 2 L ∪L L ∪L 1 θ L ∪L 2
∏ (E E)=∏ ((∏ (E)) (∏ (E)))

21

Equivalence Rules (Cont.)
• Set union and intersection are commutative(set difference is not commutative).（规

则9：集合的并和交满足交换律）
– �1 ∪ �2 = �2 ∪ �1

– �1 ∩ �2 = �2 ∩ �1

• Set union and intersection are associative.（规则10：集合的并和交满足结合律）
– �1 ∪ �2 ∪ �3 = �1 ∪ �2 ∪ �3
– �1 ∩ �2 ∩ �3 = �1 ∩ �2 ∩ �3

• Selection distributes over , , –. （规则11：选择操作对并、交、差满足分配率）
– �� �1 − �2 = �� �1 − �� �2

• similarly for ∪ and ∩ in place of –
– �� �1 − �2 = �� �1 − �2

• similarly for ∩ in place of –, but not for ∪
• Projection distributes over union.（规则12：投影对并的分配律）

– Π� �1 ∪ �2 = Π� �1 ∪ Π� �2

22

Example 1: Pushing Selections

• Eg.: Find the names of all instructors in the Music department, along

with the titles of the courses that they teach

name, title(dept_name= ‘Music’(instructor ⨝ (teaches ⨝ course_id, title (course))))

• Transformation using rule 7a

name, title((dept_name= ‘Music’(instructor)) ⨝ (teaches ⨝ course_id, title (course)))

23

Example 2: Multiple Transformations
• Eg.: Find the names of all instructors in the Music department who have taught

a course in 2017, along with the titles of the courses that they taught
name, title(dept_name= "Music”year = 2017(instructor ⨝ (teaches ⨝ course_id, title (course))))

• Rule 6a:
name, title(dept_name= “Music”year = 2017((instructor ⨝ teaches) ⨝ course_id, title (course)))

• Rule 7a:
 name, title((dept_name= “Music”year = 2017(instructor ⨝ teaches)) ⨝ course_id, title (course))

• Rule1 & 7a:
 name, title((dept_name= “Music” (instructor) ⨝ year = 2017 (teaches)) ⨝ course_id, title (course))

24

Example 2: Multiple Transformations

25

Example 3: Multiple Transformations
• Eg.: Find the names of all customers with an account at a Brooklyn branch

whose account balance is over $1000
– Π�� ���=“��������”∧ �������>1000 �����ℎ ⋈ ������� ⋈ ���������
– CN: customer name, BC: branch city

• Task: Give one equivalent expression with better execution performance

• Performing the selection as early as possible reduces the size of the
relation to be joined.

26

Example 3: Multiple Transformations
• Eg.: Find the names of all customers with an account at a Brooklyn branch

whose account balance is over $1000
– Π�� ���=“��������”∧ �������>1000 �����ℎ ⋈ ������� ⋈ ���������

• Task: Give one equivalent expression with better execution performance
• One solution: Performing the selection as early as possible

 Π�� ���="��������" ������ ⋈ ��������>���� ������� ⋈ ���������

27

Example 4: Projection Operation

• When we compute
(branch-city = “Brooklyn” (branch) account)

we obtain a relation whose schema is:
(branch-name, branch-city, assets, account-number, balance)

• Push projections using equivalence rules 8a and 8b; eliminate unneeded
attributes from intermediate results to get:
  customer-name (
  account-number (branch-city = “Brooklyn” (branch) account) depositor))

customer-name((branch-city = “Brooklyn” (branch) account) depositor)

28

Join Ordering

• For three relations �1, �2, and �3,
 �1 ⋈ �2 ⋈ �3 = �1 ⋈ �2 ⋈ �3

• If �2 ⋈ �3 is quite large and �1 ⋈ �2 is small, we choose
 �1 ⋈ �2 ⋈ �3

 so that we can compute and store a smaller temporary relation

29

Join Ordering (Cont.)
• Consider the expression

name, title(dept_name= “Music” (instructor) ⨝ teaches) ⨝ course_id, title (course))))

• Solution A
– compute (teaches ⨝ course_id, title (course)) first, and join the result with

dept_name=“Music”(instructor)
– the result of the first join is likely to be a large relation

• Solution B
– compute (dept_name=“Music”(instructor) ⨝ teaches) first
– only a small fraction of instructors are likely to be from the Music department

30

Outline

l Introduction

l Transformation of Relational Expressions

 Catalog Information for Cost Estimation

l Estimation of Statistics

l Dynamic Programming for Choosing Evaluation Plans

31

Statistical Information for Relation
• 关系(表)的统计信息

– ��: the number of tuples in a relation �
– ��: the number of blocks of �
– ��: the size of a tuple of �
– ��: the blocking factor of �, i.e., the number of tuples that fit into one block
– � �, � : the number of distinct values that appear in � for attribute A, i.e.,

the size of �� �
– SC(A, r): selection cardinality of attribute A of relation r; average number

of records that satisfy equality on A.
– If the tuples of � are stored together physically in a file, then: �� = ��

��

• Estimation
– Size
– Distinct Values

32

Catalog Information about Indices
• ��: the average fan-out(扇出) of internal nodes of index �

– for tree-structured indices such as B+-tree

• ���: the number of levels in index �
– i.e., the height of �
– for a balanced tree index (such as B+-tree) on attribute A of relation �,

��� = ����� � �, � (其中� �, � : the number of distinct values)

– for a hash index, ��� is 1

• ���: the number of lowest-level index blocks in �
– i.e., the number of blocks at the leaf level of the index

33

Statistical Information for Examples
• faccount= 20 (20 tuples of account fit in one block)
• V(branch-name, account) = 50 (50 branches)
• V(balance, account) = 500 (500 different balance values)
• naccount = 10000 (account has 10,000 tuples)
• Assume the following indices exist on account:

– A primary, B+-tree index for attribute branch-name
– A secondary, B+-tree index for attribute balance

– ��: the number of tuples in a relation �
– ��: the number of tuples that fit into one block
– � �, � : the number of distinct values that appear in � for attribute A

34

Measures of Query Cost
• Recall that

– Typically, disk access is the predominant cost, and is also relatively

easy to be estimated

– The number of block transfers from disk is used as a measure of the

actual cost of evaluation

– It is assumed that all transfers of blocks have the same cost

• Usually do not include the cost to write output to disk

• We refer to the cost estimate of algorithm A as EA

35

Outline

l Introduction

l Transformation of Relational Expressions

l Catalog Information for Cost Estimation

 Estimation of Statistics

l Dynamic Programming for Choosing Evaluation Plans

36

简单选择操作结果大小估计
• Equality selection ��=� �

– 假设取值均匀分布，则可估计选择结果有��/� �, � 个元组
– SC(A, r) : number of records that will satisfy the selection
– SC(A, r)/fr : number of blocks that these records will occupy
– E.g. Binary search cost estimate becomes

– Equality condition on a key attribute: SC(A,r)= 1

  1),()(log22 









r
ra f

rASCbE

37

简单选择操作结果大小估计
• Equality selection ��=� �

– 假设取值均匀分布，则可估计选择结果有��/� �, � 个元组

• Selections of the form ��≤� � ， case of A  v (r) is symmetric
– Let � denote the estimated number of tuples satisfying the condition. If

��� �, � and ��� �, � are available in database catalog and we assume
that values are uniformly distributed (值均匀分布)

• � = �, if � < ��� �, �

• � = �� ∙ �−��� �,�
��� �,� −��� �,�

• � = ��, if � ≥ ��� �, �

– In absence of statistical information, � is assumed to be ��/�

– ��: the number of tuples in a relation �
– � �, � : the number of distinct values that appear in � for attribute A

38

复杂选择操作结果大小估计
• Selectivity (中选率) of a condition ��

– The probability that a tuple in the relation � satisfies ��
– If �� is the number of tuples satisfying ��, the selectivity of �� is given by ��/��

• 合取: ���∧��∧…∧�� �
– Estimated number of tuples:

�� ∗
�� ∗ �� ∗ … ∗ ��

��
�

• 析取: ���∨��∨…∨�� �
– Estimated number of tuples:

• 取反: �¬� �
– Estimated number of tuples: �� − ���� �� �









)1(...)1()1(1 21

r

n

rr
r n

s
n
s

n
sn

39

连接操作结果大小估计
• Cartesian product

– � × � contains �� ∗ �� tuples
• Natural join

– If � ∩ � = ∅, then � ⋈ � is the same as � × �
– If � ∩ � is a key for �, then a tuple of � will join with at most one tuple

from �, and size � ⋈ � ≤ ��

– If � ∩ � is a foreign key in � referencing �, the number of tuples in
� ⋈ � is exactly the same as the number of tuples in �

• Example: depositor ⋈ customer
– customer-name in depositor is a foreign key referencing customer
– the result has exactly ���������� tuples

40

连接操作结果大小估计(续)
• Catalog information for join examples:

– ��������� = 10,000, ��������� = 25， ��������� =10,000/25 = 400
– ���������� = 5,000, ���������� = 50， ���������� = 5,000/50 = 100
– V(customer-name, depositor) = 2,500, which implies that, on average,

each customer has two accounts
• Example: ��������� ⋈ ��������

– ���������� = 5000 (customer-name in depositor is a foreign key referencing
customer, the result has exactly ���������� tuples)

– ��: the number of tuples in a relation �
– ��: the number of tuples that fit into one block
– ��: the number of blocks of �
– � �, � : the number of distinct values that appear in � for attribute A

41

连接操作结果大小估计(续)
• If � ∩ � = {�} is not a key for � or �

– If we assume that every tuple � in � produces tuples in � ⋈ �, the

number of tuples in � ⋈ � is estimated to be:
�� ∗ ��

� �, �
– If the reverse is true, the estimate obtained will be:

�� ∗ ��

� �, �
– The lower of these two estimates is probably the more accurate one

– � �, � : the number of distinct values that appear in � for attribute A

42

连接操作结果大小估计(续)
• Estimate the size of depositor ⋈ customer without using the

information about foreign keys:
– V(customer-name, depositor) = 2500, ���������� = 5,000, and

V(customer-name, customer) = 10000, ��������� = 10,000
– The two estimates are
 5000 * 10000/2500 = 20,000 and
 5000 * 10000/10000 = 5000

• Choose the lower estimate, which is the same as the computation using
foreign keys

– � �, � : the number of distinct values that appear in � for attribute A

43

其他操作结果集大小估计
• 投影

– estimated size of �� � = � �, �

• 聚集
– estimated size of ��� � = � �, �

• 集合操作
– For unions/intersections of selections on the same relation: rewrite and

use size estimate for selections
• E.g., ��� � ∪ ��� � can be rewritten as ���∨�� �

– For operations on different relations:
• estimated size of � ∪ � = size of � + size of �
• estimated size of � ∩ � = min{size of �, size of �}
• estimated size of � − � = �
• All the three estimates may be quite inaccurate, but provide upper bounds for

the sizes

44

其他操作结果集大小估计（续）

• Outer join
– Estimated size of � � = size of � ⋈ � + size of �

• Case of right outer join is symmetric

– Estimated size of � � = size of � ⋈ � + size of � + size of �

45

Estimation of Distinct Values
• Selections: �� �

– If � forces � to take a specified value:
• If A = 3, � �, �� � = 1

– If � forces � to take on one of a specified set of values
• � �, �� � = number of specified values
• e.g., (A = 1 V A = 3 V A = 4)

– If the selection condition � is of the form � op �
• Estimated � �, �� � = � �, � ∗ �, where s is the selectivity of the selection.

– In all the other cases: use approximate estimate of ��� � �, � , ��� �
• More accurate estimate can be obtained using probability theory

46

Estimation of Distinct Values (Cont.)
• Joins: � ⋈ �

– If all attributes in � are from �
• Estimated size of � �, � ⋈ � = ��� � �, � , ��⋈�

– If � contains attributes �1 from � and �2 from �, then
• � �, � ⋈ � = ��� � ��, � ∗ � �� − ��, � , � �� − ��, � ∗ � ��, � , ��⋈�
• More accurate estimate can be obtained using probability theory

• Projection
– Estimation of distinct values are straightforward for projections
– They are the same in �� � as in �

• Aggregation
– For min � and max � , the number of distinct values can be estimated as

��� � �, � , � �, � where � denotes grouping attributes
– For other aggregates, assume all values are distinct, and use � �, �

47

Outline

l Introduction

l Transformation of Relational Expressions

l Catalog Information for Cost Estimation

l Estimation of Statistics

 Dynamic Programming for Choosing Evaluation Plans

48

Enumeration of Equivalent Expressions
• Query optimizers use equivalence rules to systematically generate

expressions equivalent to the given expression
• Conceptually, generate all equivalent expressions by repeatedly executing

the following step until no more expressions can be found
– Given an expression E, if any sub-expression Es of E matches one side of

an equivalence rule, the optimizer generates a new expression where Es
is transformed to match the other side of the rule

• The above approach is very expensive in space and time.
– Space requirements reduced by sharing common sub-expressions for

equivalent expressions
– Time requirements are reduced by not generating all expressions

49

Evaluation Plan
• An evaluation plan defines exactly what algorithm is used for each

operation, and how the execution of the operations is coordinated

50

Choice of Evaluation Plans
• Must consider the interaction of evaluation techniques when choosing evaluation

plans.
– choosing the cheapest algorithm for each operation independently may not yield

best overall algorithm.
• merge-join may be costlier than hash-join, but may provide a sorted output

which reduces the cost for an outer level aggregation
• nested-loop join may provide opportunity for pipelining

• Practical query optimizers incorporate elements of the following two broad
approaches:
1. Search all the plans and choose the best plan in a cost-based fashion
2. Uses heuristics to choose a plan

51

Cost-based Optimization
• To find the best join-order for �� ⋈ �� ⋈ …⋈ ��

– There are 2 � − 1 !/ � − 1 ! (Refer to Practice Exercises 16.12) different join
orders for above expression

– With � = 3, the number is 12

– With � = 7, the number is 665280
– With � = 10, the number is greater than 17.6 billion

• No need to generate all the join orders
– Using dynamic programming
– The least-cost join order for any subset of {�1, �2, …, ��} is computed only once and

stored for future use

�1 ⋈ �2 ⋈ �3 , �1 ⋈ �3 ⋈ �2 , �2 ⋈ �3 ⋈ �1, �3 ⋈ �2 ⋈ �1

�2 ⋈ �1 ⋈ �3 , �2 ⋈ �3 ⋈ �1 , �1 ⋈ �3 ⋈ �2, �3 ⋈ �1 ⋈ �2

�3 ⋈ �1 ⋈ �2 , �3 ⋈ �2 ⋈ �1), �1 ⋈ �2 ⋈ �3, �2 ⋈ �1 ⋈ �3

52

Cost-based Optimization
• Given an example (�� ⋈ �� ⋈ �� ⋈ ��⋈ ��

• To compute (�� ⋈ �� ⋈ �� , there are 12 possible plans
• Join the result of (�� ⋈ �� ⋈ �� with ��⋈ ��, there are 12 possible

plans
• So there are totally 12*12=144 possible plans

• On the other hand, we first compute (�� ⋈ �� ⋈ �� , find the best
plan, then join the result of the best plan of (�� ⋈ �� ⋈ �� with
��⋈ ��

• Then the totaly plans are 12+12=24

– With � = 7, the number is 665280
– With � = 10, the number is greater than 17.6 billion

• No need to generate all the join orders
– Using dynamic programming
– The least-cost join order for any subset of {�1, �2, …, ��} is computed only once and

stored for future use

53

Dynamic Programming in Optimization
• To find best join tree for a set � of � relations

– Consider all possible plans of the form: �1 ⋈ � − �1 where �1 is any

non-empty subset of �

– When the plan for any subset is computed, store it and reuse it when it

is required again, instead of re-computing it

– Recursively compute costs for joining subsets of � to find the cost of

each plan. Choose the cheapest.

54

Join Order Optimization Algorithm
procedure findbestplan(S)

if (bestplan[S].cost  )
return bestplan[S]

if (S contains only 1 relation)
 set bestplan[S].plan and bestplan[S].cost

 based on best way of accessing S
else for each non-empty subset S1 of S such that S1  S

P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

 bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan;

 execute P2.plan;
 join results of P1 and P2 using A”

return bestplan[S] Dynamic-programming algorithm

bestplan[S].cost is assumed to be
initialized to ∞ if bestplan[S] has not
yet been computed.

55

Left Deep Join Trees
• Used by the System R optimizer
• In left-deep join trees, the right-hand-side input for each join is

a relation, not the result of an intermediate join

56

Cost of Optimization
• Complexity of dynamic programming

– The time complexity is � �� . With n = 10, this number is 59000 instead of 17.6
billion

– Space complexity is � ��

• Complexity for finding the best left-deep join tree
– Consider n alternatives with one relation as right-hand side input and the other

relations as left-hand side input.
– Using (recursively computed and stored) least-cost join order for each alternative

on left-hand-side, choose the cheapest of the n alternatives.
– If only left-deep trees are considered, time complexity of finding best join order

is � ���
– Space complexity remains at � ��

• Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small �, generally < 10)

57

Interesting Orders in Cost-based Optimization
• Consider the expression �� ⋈ �� ⋈ �� ⋈ �� ⋈ ��

• An interesting sort order is a particular sort order of tuples that
could be useful for a later operation.
– Generating the result of �� ⋈ �� ⋈ �� sorted on the attributes common with �� or

�� may be useful.
– Using merge-join to compute �� ⋈ �� ⋈ �� may be costlier, but may provide an

output sorted in an interesting order.
• Not sufficient to find the best join order for each subset of the set

of � given relations; must find the best join order for each subset,
for each interesting sort order of the join result for that subset
– Simple extension of earlier dynamic programming algorithms
– Usually, the number of interesting orders is quite small and doesn’t affect

time/space complexity significantly

58

Heuristic Optimization
• Cost-based optimization is expensive, even with dynamic programming.
• Systems may use heuristics to reduce the number of choices that must

be made in a cost-based fashion.
• Heuristic optimization transforms the query-tree by using a set of rules

that typically (but not in all cases) improve execution performance:
– Perform selection early (reduces the number of tuples)
– Perform projection early (reduces the number of attributes)
– Perform most restrictive selection and join operations before other

similar operations.
– Some systems use only heuristics, others combine heuristics with

partial cost-based optimization.

59

Steps in Typical Heuristic Optimization
1. Deconstruct conjunctive selections into a sequence of single selection operations

(Equiv. rule 1.).

2. Move selection operations down the query tree for the earliest possible execution
(Equiv. rules 2, 7a, 7b, 11).

3. Execute first those selection and join operations that will produce the smallest
relations (Equiv. rule 6).

4. Replace Cartesian product operations that are followed by a selection condition by
join operations (Equiv. rule 4a).

5. Deconstruct and move as far down the tree as possible lists of projection
attributes, creating new projections where needed (Equiv. rules 3, 8a, 8b, 12).

6. Identify those subtrees whose operations can be pipelined, and execute them using
pipelining.

))(()(
2121

EE   

60

Assignments

• Practice Exercises
– 16.5, 16.6, 16.7

• Exercises
– 16.16

• DDL：12:59pm, May 21, 2025

61

End of Lecture 11

