
1复旦大学计算机科学技术学院

Lecture 2: Relational Model and Relational Algebra
第2讲：关系模型与关系代数

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3&4: SQL
(Introduction and intermediate)

– Lect. 4 (Mar. 13) - Ch5: Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 7 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 8 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no classes
– Lect. 9 (May 8) - Ch15: Query processing
– Lect. 10 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 11 (May 22) - Ch17: Transactions
– Lect. 12 (May 29) - Ch18: Concurrency

control
– Lect. 13 (Jun. 5) - Ch19: Recovery system
– Lect. 14 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

Two Tables of the University Database

Instructor table Student table

4

Schema Diagram of the University Database

5

E-R Diagram for a Banking Enterprise

multi-valued
attribute

derived attribute

Weak entity sets

account-branch

6

The Banking Database Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• cust_banker = (customer_id, employee_id, type)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)

7

Outline

F Relational Database Model
– The structure of a relation
– Relational database and
– Keys
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations

8

An Example of Relation/Table

9

Basic Structure of a Relation
• Given sets 𝐷!, 𝐷", ⋯ , 𝐷#, a relation 𝑟 is a subset of 𝐷!×𝐷"×⋯×𝐷#, i.e., a set

of n-tuples (𝑎!, 𝑎", ⋯ , 𝑎#) where each 𝑎$ ∈ 𝐷$(𝑖 = 1, …𝑛)

• E.g., if
customer_name = {Jones, Smith, Curry, Lindsay}
customer_street = {Main, North, Park}
customer_city = {Harrison, Rye, Pittsfield}

then
r = {(Jones, Main, Harrison), (Smith, North, Rye),

(Curry, North, Rye), (Lindsay, Park, Pittsfield)}
is a relation over customer_name x customer_street x customer_city

n-tuples: n元组

10

Attribute (属性)
• Each relation consists of a set of attributes 𝐴!, 𝐴", … , 𝐴#

• The domain of an attribute is the whole set of available and legal

values of the attribute

• Attribute values are (normally) required to be atomic (原子性)

– Multi-valued attributes and composite attributes are not atomic

• 多值属性：电话号码；复合属性：通信地址

• The special value null is a member of every domain. It may cause

complications in the definition of many operations

11

Relation Schema (关系模式)
• 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 are attributes, and 𝑹 = (𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏) is a relation

schema,
• e.g.,

– instructor_schema =(id, name, dept_name, salary)
– customer_schema=(custom_id, custom_ name, custom_ street, custom_ city)

• 𝒓(𝑹) is a relation on the relation schema 𝑹,
• e.g.,

– instructor(instructor_schema)
– customer(customer_schema)

12

Relation Instance (关系实例)
• A relation instance corresponds to the current values of a

relation, which is specified by a table
• An element 𝒕 of 𝒓 is a tuple (元组), represented by a row in the

table

Tuples/Rows

Attributes/Columns

13

Relation vs. Variable
• Relation schema vs. Variable type
• Relation instance vs. Variable value
• For example

– int vs. customer_schema =(id, name, street, city)
– int A vs. customer(customer_schema)
– A=10 vs.

14

Relations are Unordered
• The order of tuples/attributes in a relation is irrelevant. Tuples

could be stored in an arbitrary order
• E.g., instructor relation with unordered tuples

15

Outline

F Relational Database Model
– The structure of a relation
– Relational database
– Keys
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations

16

Database
• A database consists of multiple relations

• Why NOT use a single relation?

• Storing all information as a single relation results in

– repetition of information, e.g., one department has many students,

record the information of both department and student

– the need for null values, e.g., represent a customer without an account

• How many relations should have?

– Normalization (规范化) theory (Chapter 7) deals with how to design relational

schemas

17E-R Diagram for University Database

Instructor relation

18

The customer Relation The depositor Relation

E-R Diagram for the Banking Enterprise

19

Outline

F Relational Database Model
– The structure of a relation
– Relational database
– Keys
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations

20

Keys (码、键)
• Superkey（超码）

– Let 𝑲 ⊆ 𝑹, 𝑲 is a superkey of relation schema 𝑹 if the values for 𝑲 are
sufficient to identify a unique tuple of each possible relation 𝒓(𝑹)

– E.g., {instructor_id}, {instructor_id, instructor_name} and
{instructor_name} are superkeys of instructor, if no two instructors
have the same name

– If tuples 𝒕𝟏 ≠ 𝒕𝟐, then 𝒕𝟏[𝑲] ≠ 𝒕𝟐[𝑲]
• Candidate key（候选码）

– 𝑲 is a candidate key if 𝑲 is minimal
– E.g., {instructor_name} is a candidate key for instructor, since it is a

superkey (assuming no two instructors have the same name)
• Primary key（主码）/ Primary key constraint

– A candidate key is chosen by the DB designer to identify tuples within a
relation

21

Keys (Cont.)
• Foreign key(外键/外码)

– A relation schema 𝑹𝟏, may include among its attributes the primary key
of another relation schema 𝑹𝟐. This attribute is called a foreign key
from 𝑹𝟏, referencing 𝑹𝟐

– The relation 𝒓𝟏 is called the referencing relation (参照关系) of the
foreign key dependency, and 𝒓𝟐 is called the referenced relation (被参
照关系) of the foreign key dependency

• Foreign key constraint / Referential integrity
constraint (外键约束/参照完整性约束)
– The values appearing in specified attributes of any tuple in the

referencing relation should also appear in specified attributes of at least
one tuple in the referenced relation

22

The University Database Schema
• classroom(building, room_number, capacity)
• department(dept_name, building, budget)
• course(course_id, title, dept_name, credits)
• instructor(ID, name, dept_name, salary)
• section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
• teaches(ID, course_id, sec_id, semester, year)
• student(ID, name, dept_name, tot_cred)
• takes(ID, course_id, sec_id, semester, year, grade)
• advisor(s_ID, i_ID)
• time slot(time_slot_id, day, start_time, end_time)
• prereq(course_id, prereq_id)

23

The Banking Database Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• cust_banker = (customer_id, employee_id, type)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)

24

Determining Keys from E-R Sets

p Strong entity set: has a primary key
p Weak entity set: may not have sufficient attributes to form a

primary key
n Discriminator (分辨符) plus the Key of the identifying entity

set (标识实体集, or owner entity set 属主实体集)
p Relationship set

n Union of keys of the related entity sets
(discussed later in Chapter 6)

25E-R Diagram for University Database

26

The customer Relation The depositor Relation

E-R Diagram for the Banking Enterprise

27

Outline

F Relational Database Model
– The structure of a relation
– Relational database
– Keys
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations

28

Database Schema
• Database schema

– All the schemas of relations, along with primary key and foreign key
dependencies in a database consist of the database’s schema

• Database schema diagram (模式图)
– A database schema can be depicted pictorially by a schema diagram

29

Schema Diagram

Schema Diagram (模式图)
for the banking enterprise

Banking database

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

30

Schema diagram for the university database

31

Outline

• Relational Database Model
– The structure of a relation
– Relational database
– Keys
– Database schema

FRelational Algebra
– Relational query languages
– Relational operations

32

Relational Query Languages
• Query Languages used to request information from the database

– Imperative languages, functional languages, declarative languages

• Categories of languages
– Procedural

• Relational Algebra（关系代数）: functional language
– Non-procedural

• SQL（结构化查询语言）: mainly, it is declarative, but it also has
imperative, functional features

• Tuple Relational Calculus（元组关系演算）
– R-S＝{t│R(t)∧┐S（t）}， R∪S={t│R(t)∨S(t)}

• Domain Relational Calculus（域关系演算）
– {<A, B, C> | <A, B, C> ∈ Student ∧ C = “Monitor" }

33

Outline

• Relational Database Model
– The structure of a relation
– Relational database
– Keys
– Database schema

FRelational Algebra
– Relational query languages
– Relational operations

34

Relational Algebra
• A procedural language consisting of a set of operations that take

one or more relations as input and produce a new relation as the
result

• Six basic operations
– Select (选择)；水平选择，选择行/元组
– Project (投影)；垂直选择，选择列/属性
– Union (集合并)
– Set difference (集合差)
– Cartesian product (笛卡尔积)
– Rename (重命名)

• These operators take one or two relations as inputs and give a new
relation as a result

35

Select Operation

• Notation: 𝝈𝑷 𝒓 = 𝒕 𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝑷 𝒕
– 𝑷 is the selection predicate(选择谓词）consisting of ∧(and), ∨(or),

¬(not), =, ≠, <, >, ≤, ≥
– E.g.,

A B C D

a

a

b

b

a

b

b

b

1
5
12
23

7
7
3
10

A B C D

a

b

a

b

1
23

7
10

relation 𝒓 𝝈𝑨(𝑩 ∧ 𝑫,𝟓(𝒓)

36

Select Operation (Cont.)
• E.g., select those tuples of the instructor relation where the

instructor is in the “Physics” department
– Query

s dept_name=“Physics” (instructor)

– Result

Instructor relation

37

Select Operation (Cont.)
• Allow comparisons using =, ¹, >, ³, <, £ in the selection predicate.
• Can combine several predicates into a larger predicate by using the

connectives（连接词）: Ù (and), Ú (or), ¬ (not)
– Example: Find the instructors in Physics with a salary greater $90,000

s dept_name=“Physics” Ù salary > 90,000 (instructor)
• The select predicate may include comparisons between two attributes.

– Example: find all departments whose name is the same as their building
name:
s dept_name = building (department)

38

Project Operation
• Notation: 𝜫𝑨𝟏,𝑨𝟐,…,𝑨𝒌(𝒓)

– 𝑨𝟏, 𝑨𝟐, …, 𝑨𝒌 are attribute names and 𝒓 is a relation name
– The result is defined as the relation of 𝒌 columns obtained by erasing

the columns that are not listed
– Duplicate rows are removed from result, since relations are sets
– E.g.,

A B C

a

a

b

b

10
20
30
40

1
1
1
2

A C

a

a

b

b

1
1
1
2

=

A C

a

b

b

1
1
2

relation 𝒓 𝜫𝑨,𝑪(𝒓)

39

Project Operation (Cont.)
• E.g., eliminate the dept_name attribute of instructor
• Query:

ÕID, name, salary (instructor)
• Result:

Instructor relation

40

Union Operation
• Notation: 𝒓 ∪ 𝒔 = {𝒕|𝒕 ∈ 𝒓 𝒐𝒓 𝒕 ∈ 𝒔}

– 𝒓, 𝒔 must have the same arity (同元的), i.e., the same number of attributes
– The attribute domains must be compatible (相容的）

• E.g., the 2nd column of 𝒓 deals with the same type of values as does the 2nd column of 𝒔
– E.g., find all courses taught in the Fall 2022 semester, or in the Spring 2023

semester, or in both:
Õcourse_id(ssemester=“Fall”Λ year=2022 (section)) È Õcourse_id (ssemester=“Spring” Λ year=2023 (section))

A B

a

a

b

1
2
1

A B

a

b

2
3

s

A B

a

a

b

b

1
2
1
3relations 𝒓, 𝒔

𝒓 ∪ 𝒔

r

41

Set Difference Operation
• Notation: 𝒓 − 𝒔 = {𝒕|𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝒕 ∉ 𝒔}

– Set differences must be taken between compatible relations, i.e.,
𝑟 and 𝑠 must have the same arity and attribute domains

– E.g.,

r

A B

a

a

b

1
2
1

A B

a

b

2
3

s

A B

a

b

1
1

relations 𝒓, 𝒔 𝒓 − 𝒔

42

Set Difference Operation (Cont.)
• E.g., to find all courses taught in the Fall 2022 semester, but not in

the Spring 2023 semester

Õcourse_id(ssemester=“Fall”Λ year=2022 (section)) −
Õcourse_id (ssemester=“Spring”Λ year=2023 (section))

43

Cartesian Product Operation
• Notation: 𝒓×𝒔 = {𝒕𝒒|𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝒒 ∈ 𝒔}

– The attributes of 𝒓(𝑹) and 𝒔(𝑺) should be disjoint, i.e., 𝑹 ∩ 𝑺 = ∅
– If the attributes of 𝒓(𝑹) and 𝒔(𝑺) are not disjoint, then renaming must

be used
A B

a
a
a
a
b
b
b
b

1
1
1
1
2
2
2
2

C D

a
b
b
g
a
b
b
g

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B

a

b

1
2

r

C D

a
b
b
g

10
10
20
10

E

a
a
b
b

s

relations 𝒓, 𝒔 𝒓×𝒔

44

instructor X teaches table

45

Cartesian Product Operation (Cont.)
• sinstructor.id = teaches.id (instructor x teaches))

46

Composition of Operations
• Build expressions using multiple operations

– E.g., 𝝈𝑨(𝑪(𝒓×𝒔)

A B

a
a
a
a
b
b
b
b

1
1
1
1
2
2
2
2

C D

a
b
b
g
a
b
b
g

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E

a
b
b

1
2
2

a
b
b

10
20
20

a
a
b

𝒓×𝒔

𝝈𝑨(𝑪(𝒓×𝒔)

A B

a

b

1
2

r

C D

a
b
b
g

10
10
20
10

E

a
a
b
b

s

relations 𝒓, 𝒔

47

Rename Operation (更名运算)
• Allows us to name, and therefore to refer to, the results of

relational-algebra expressions.
– E.g., 𝝆𝑿(𝑬) returns the expression 𝑬 under the name 𝑿

• If a relational-algebra expression 𝑬 has arity 𝒏
– 𝝆𝑿(𝑨𝟏,𝑨𝟐,…,𝑨𝒏)(𝑬) returns the result of expression 𝑬 under the name 𝑿,

and with the attributes renamed to 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏

48

Notes about Relational Languages

• Each query input is a table (or a set of tables)

• Each query output is a table.

• All data in the output table appears at least in one of the input

tables

49

Schema for Following Examples

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

50

Example Queries (1)
• Find all loans of over $1200

• Find the loan number for each loan of an amount greater than
$1200

𝜫𝒍𝒐𝒂𝒏_𝒏𝒖𝒎𝒃𝒆𝒓(𝝈𝒂𝒎𝒐𝒖𝒏𝒕5𝟏𝟐𝟎𝟎(𝒍𝒐𝒂𝒏))

𝝈𝒂𝒎𝒐𝒖𝒏𝒕5𝟏𝟐𝟎𝟎(𝒍𝒐𝒂𝒏)

51

Example Queries (2)
• Find the names of all customers who have a loan, an account, or

both, from the bank

𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆 𝒃𝒐𝒓𝒓𝒐𝒘𝒆𝒓 ∪ 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆 𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓

52

Example Queries (3)
• Find the names of all customers who have a loan at the Perryridge

branch

• Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank

Õcustomer_name (sbranch_name=“Perryridge”

(sborrower.loan_number = loan.loan_number(borrower x loan)))

Õcustomer_name (sbranch_name = “Perryridge”

(sborrower.loan_number = loan.loan_number(borrower x loan))) – Õcustomer_name(depositor)

53

Example Queries (4)
• Find the names of all customers who have a loan at the Perryridge

branch
• Query 1

• Query 2

Õcustomer_name(sloan.loan_number = borrower.loan_number
((sbranch_name = “Perryridge”(loan)) x borrower))

Õcustomer_name(sbranch_name = “Perryridge”
(sborrower.loan_number = loan.loan_number(borrower x loan)))

54

Example Queries (5)
• Find the largest account balance
• Strategy:

– Find those balances that are not the largest
– Rename account relation as 𝑑 so that we can compare each account

balance with all others
– Use set difference to find those account balances that were not

found in the earlier step

Õbalance(account)
- Õaccount.balance

(saccount.balance < d.balance (account x rd (account)))

55

Relational Expressions
• A basic expression in the relational algebra consists of either of the following

– A relation in the database
– A constant relation, e.g., {(22222, Einsteir, Physics, 9500), (76543, Singh, Finance,

80000)}
• The result of any relational operation on a basic expression is relational-

algebra expression
• Let 𝑬𝟏 and 𝑬𝟐 be relational-algebra expressions, the following are all

relational-algebra expressions:
– 𝑬𝟏 ∪ 𝑬𝟐
– 𝑬𝟏 − 𝑬𝟐
– 𝑬𝟏×𝑬𝟐
– 𝝈𝒑(𝑬𝟏), 𝑷 is a predicate on attributes in 𝑬𝟏
– 𝜫𝒔(𝑬𝟏), 𝑺 is a list consisting of some of the attributes in 𝑬𝟏
– 𝝆𝑿 𝑬𝟏 , 𝑿 is the new name for the result of 𝑬𝟏

56

Additional Operations
• Additional operations

– Set intersection (集合交)
– Natural join (自然连接)
– Outer join（外连接）
– Division (除)
– Assignment (赋值)

• Additional operations do not add any power to the relational
algebra, but simplify common queries

57

Set Intersection Operation
• Notation: 𝒓 ∩ 𝒔 = {𝒕|𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝒕 ∈ 𝒔}

– 𝒓, 𝒔 have the same arity
– the attributes of 𝒓 and 𝒔 are compatible
– Note: 𝒓 ∩ 𝒔 = 𝒓 − (𝒓 − 𝒔)

A B

a
a
b

1
2
1

A B

a
b

2
3

r s

Relations 𝒓, 𝒔:

A B

a 2

𝒓 ∩ 𝒔:

𝑟 𝑠

𝒓 − 𝒔

58

Set Intersection Operation (Cont.)

• E.g., Find the set of all courses taught in both the Fall 2022 and

the Spring 2023 semesters.

Õcourse_id (s semester=“Fall” Λ year=2022 (section)) Ç

Õcourse_id (s semester=“Spring” Λ year=2023 (section))

59

Natural Join Operation
• Notation: 𝒓 ⋈ 𝒔
• Let 𝒓 and 𝒔 be the relations on schemas 𝑹 and 𝑺 respectively. Then

𝒓 ⋈ 𝒔 is a relation on schema 𝑹 ∪ 𝑺 obtained as follows
– Consider each pair of tuples 𝒕𝒓 from 𝒓 and 𝒕𝒔 from 𝒔
– If 𝒕𝒓 and 𝒕𝒔 have the same value on each of the attributes in 𝑹 ∩ 𝑺, add a

tuple 𝒕 to the result, where
• 𝒕 has the same value as 𝒕𝒓 on 𝒓
• 𝒕 has the same value as 𝒕𝒔 on 𝒔

• E.g., 𝑹 = (𝑨, 𝑩, 𝑪, 𝑫), 𝑺 = (𝑬,𝑩,𝑫)
– Result schema: (𝑨, 𝑩, 𝑪, 𝑫, 𝑬)
– 𝒓 ⋈ 𝒔 is defined as: 𝜫𝒓.𝑨, 𝒓.𝑩, 𝒓.𝑪, 𝒓.𝑫, 𝒔.𝑬(𝝈𝒓.𝑩(𝒔.𝑩 ⋀𝒓.𝑫(𝒔.𝑫(𝒓×𝒔))

60

Natural Join Operation – Example

A B

a
b
g
a
d

1
2
4
1
2

C D

a
g
b
g
b

a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E

a
b
g
d
Î

r s

A B

a
a
a
a
d

1
1
1
1
2

C D

a
a
g
g
b

a
a
a
a
b

E

a
g
a
g
d

𝒓 ⋈ 𝒔:

Relations 𝒓, 𝒔:

61

Natural Join Operation(cont.)
• Let 𝒓(𝑹) and 𝒔(𝑺) be relations without any attributes in common,

i.e., 𝑹 ∩ 𝑺 = ∅. Then, 𝒓 ⋈ 𝒔 = 𝒓×𝒔

• 𝜽-join operation

– An extension to the natural-join operation that allows us to combine a

selection and a Cartesian product into a single operation.

– Consider relations 𝒓(𝑹) and 𝒔(𝑺), and let 𝜽 be a predicate on

attributes in the schema 𝑹 ∪ 𝑺. The theta join 𝒓 ⋈𝜽 𝒔 is defined as

follows: 𝒓 ⋈𝜽 𝒔 = 𝝈𝜽(𝒓×𝒔)

62

Join Operation – Example

Relations 𝒓, 𝒔:

A B C
a1 b1 5
a1 b2 6
a2 b3 8
a2 b4 12

B E
b1 3
b2 7
b3 10
b3 2
b5 2

A R.B C S.B E
a1 b1 5 b2 7
a1 b1 5 b3 10
a1 b2 6 b2 7
a1 b2 6 b3 10
a2 b3 8 b3 10

A R.B C S.B E
a1 b1 5 b1 3
a1 b2 6 b2 7
a2 b3 8 b3 10
a2 b3 8 b3 2

A B C E
a1 b1 5 3
a1 b2 6 7
a2 b3 8 10
a2 b3 8 2

r: s:

𝒓 ⋈𝒓.𝑩;𝒔.𝑩 𝒔𝒓 ⋈ 𝒔 𝒓 ⋈𝑪=𝑬 𝒔

63

Outer Join

• An extension of the join operation that avoids loss of information

• Computes the join and then adds tuples from one relation that does

not match tuples in the other relation to the result of the join

• Uses null values:

– null signifies that the value is unknown or does not exist

– All comparisons involving null are (roughly speaking) false by definition.

64

Outer Join – Example

customer-name loan-number
Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount

L-170
L-230
L-260

branch-name

Downtown
Redwood
Perryridge

Relation loan Relation borrower

loan-number amount
L-170
L-230

3000
4000

customer-name
Jones
Smith

branch-name
Downtown
Redwood

Inner Join: loan Borrower

Jones
Smith
null

loan-number amount
L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name
Downtown
Redwood
Perryridge

Left Outer Join: loan Borrower

loan-number amount
L-170
L-230
L-155

3000
4000
null

customer-name
Jones
Smith
Hayes

branch-name
Downtown
Redwood
null

Right Outer Join: loan borrower

loan-number amount
L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name
Jones
Smith
null
Hayes

branch-name
Downtown
Redwood
Perryridge
null

Full Outer Join: loan borrower

65

Division Operation
• Notation: 𝒓 ÷ 𝒔

– 𝒓 and 𝒔 are relations on schemas 𝑹 and 𝑺, respectively
• 𝑹 = (𝑨𝟏, … , 𝑨𝒎, 𝑩𝟏, … , 𝑩𝒏)
• 𝑺 = (𝑩𝟏, … , 𝑩𝒏)

– The result of 𝒓 ÷ 𝒔 is a relation on schema 𝑹 − 𝑺 = (𝑨𝟏, … , 𝑨𝒎), i.e.,
𝒓 ÷ 𝒔 = {𝒕|𝒕 ∈ 𝜫𝑹@𝑺 𝒓 ⋀∀𝒖 ∈ 𝒔(𝒕𝒖 ∈ 𝒓)}

• A tuple 𝒕 is in 𝒓 ÷ 𝒔 if and only if both of two conditions hold:
– 𝒕 is in 𝜫𝑹>𝑺(𝒓)
– For every tuple 𝒕𝒔 in 𝒔, there is a tuple 𝒕𝒓 in 𝒓 satisfying:

• 𝒕𝒓 𝑺 = 𝒕𝒔[𝑺]
• 𝒕𝒓 𝑹 − 𝑺 = 𝒕

66

Division Operation – Example

r ÷ s : A

a

b

Relations r, s : B

1
2

A B

a
a
a
b
g
d
d
d
Î
Î
b

1
2
3
1
1
1
3
4
6
1
2

r

s

67

Division Operation (Cont.)
• Definition in terms of the basic algebra operation

– Let 𝒓(𝑹) and 𝒔(𝑺) be relations, and let 𝑺 ⊆ 𝑹

– 𝒓 ÷ 𝒔 = 𝜫𝑹>𝑺 𝒓 − 𝜫𝑹>𝑺(𝜫𝑹>𝑺 𝒓 ×𝒔 − 𝜫𝑹>𝑺,𝑺 𝒓)

• To see why

– 𝜫𝑹>𝑺,𝑺(𝒓) simply reorders attributes of 𝒓

– 𝜫𝑹>𝑺 (𝜫𝑹>𝑺 𝒓 ×𝒔 − 𝜫𝑹>𝑺,𝑺(𝒓)) gives those tuples 𝒕 in 𝜫𝑹>𝑺(𝒓) such

that for some tuple 𝒖 ∈ 𝒔, 𝒕𝒖 ∉ 𝒓

68

Assignment Operation
• The assignment operation (←) provides a convenient way to express

complex queries
– Write query as a sequential program consisting of

• a series of assignments
• followed by an expression whose value is displayed as a result of the query

– Assignment must be made to a temporary relation variable
• Example: write 𝒓 ÷ 𝒔 as:

– 𝒕𝒆𝒎𝒑𝟏 ← 𝜫𝑹+𝑺(𝒓)
– 𝒕𝒆𝒎𝒑𝟐 ← 𝜫𝑹+𝑺(𝒕𝒆𝒎𝒑𝟏×𝒔 − 𝜫𝑹+𝑺,𝑺 𝒓)
– 𝒓𝒆𝒔𝒖𝒍𝒕 = 𝒕𝒆𝒎𝒑𝟏 − 𝒕𝒆𝒎𝒑𝟐

• The result to the right of the ← is assigned to the relation variable
on the left of the ←

69

Example Queries (6)
• Find all the customers who have accounts from at least the

“Downtown” and the “Uptown” branches
• Query 1

– 𝜫𝑪𝑵 𝝈𝑩𝑵1"𝑫𝒐𝒘𝒏𝒕𝒐𝒘𝒏" 𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈ 𝒂𝒄𝒄𝒐𝒖𝒏𝒕 ∩ 𝜫𝑪𝑵(𝝈𝑩𝑵1"𝑼𝒑𝒕𝒐𝒘𝒏"(𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈
𝒂𝒄𝒄𝒐𝒖𝒏𝒕))

– where CN denotes customer_name and BN denotes branch_name
• Query 2

– 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆,𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆(𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈ 𝒂𝒄𝒄𝒐𝒖𝒏𝒕) ÷ 𝝆𝒕𝒆𝒎𝒑(𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆)
(“𝑫𝒐𝒘𝒏𝒕𝒐𝒘𝒏” , “𝑼𝒑𝒕𝒐𝒘𝒏”)

– Note that Query2 uses a constant relation

70

Example Queries (7)

• Find all customers who have an account at all branches located in

Shanghai

– 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆,𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆 𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈ 𝒂𝒄𝒄𝒐𝒖𝒏𝒕 ÷

𝜫𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆(𝝈𝒃𝒓𝒂𝒏𝒄𝒉_𝒄𝒊𝒕𝒚;"𝑺𝒉𝒂𝒏𝒈𝒉𝒂𝒊" 𝒃𝒓𝒂𝒏𝒄𝒉)

71

Extended Relational Algebra Operations

• Generalized Projection（广义投影）

• Aggregate Functions （聚合函数）

72

Generalized Projection
• Extends the projection operation by allowing arithmetic functions

to be used in the projection list 𝜫𝑭𝟏,𝑭𝟐,…,𝑭𝒏(𝑬)

– 𝑬 is any relational-algebra expression

– Each of 𝑭𝟏, 𝑭𝟐, … , 𝑭𝒏 is a arithmetic expression involving constants and

attributes in the schema of 𝑬

• Given relation credit_info(customer_name, limit, credit_balance),
find how much more each person can spend:

– 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆, 𝒍𝒊𝒎𝒊𝒕>𝒄𝒓𝒆𝒅𝒊𝒕_𝒃𝒂𝒍𝒂𝒏𝒄𝒆(𝒄𝒓𝒆𝒅𝒊𝒕_𝒊𝒏𝒇𝒐)

73

Aggregate Functions and Operations
• Aggregation function takes a collection of values and returns a

single value as a result
– avg: average value
– min: minimum value
– max: maximum value
– sum: sum of values
– count: number of values

• Aggregate operation in relational algebra
– 𝑮𝟏,𝑮𝟏,…,𝑮𝒏𝒈𝑭𝟏 𝑨𝟏 ,𝑭𝟐 𝑨𝟐 ,…,𝑭𝒏 𝑨𝒏 𝑬 (先分组,再聚合）

• 𝑬 is any relational-algebra expression
• 𝑮𝟏, 𝑮𝟐, … , 𝑮𝒏 is a list of attributes on which to group (can be empty)
• Each 𝑭𝒊 is an aggregate function （再做聚合）
• Each 𝑨𝒊 is an attribute name

74

Aggregate Operation – Example

A B

a
a
b
b

a
b
b
b

C

7
7
3
10

Sum(C)

27

Relation r : g sum(c) (r) :

branch_name account_number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

Relation account grouped by branch_name:

branch_name balance

Perryridge
Brighton
Redwood

1300
1500
700

branch_name g sum(balance) (account)

75

Aggregate Functions (Cont.)
• Result of aggregation does not have a name

– Can use rename operation to give it a name
– For convenience, we permit renaming as part of aggregate operation

branch_name g sum(balance) as sum_balance (account)

76

Null Values
• It is possible for tuples to have a null value for some of their

attributes
– null signifies an unknown value or that a value does not exist

• The result of any arithmetic expression involving null is null
• Aggregate functions simply ignore null values

– Is an arbitrary decision? Could have returned null as result instead?
– We follow the semantics of SQL in its handling of null values

• For duplicate elimination and grouping, null is treated like any other
value, and two nulls are assumed to be the same
– Alternative: assume each null is different from each other
– Both are arbitrary decisions, so we simply follow SQL

77

Null Values
• Three-valued logic (三值逻辑) using the truth value unknown

– OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

– AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

– NOT: (not unknown) = unknown
– In SQL “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of select predicate is treated as false if it evaluates to unknown

78

Modification of the Database

• The content of the database may be modified using the following

operations:

– Deletion

– Insertion

– Updating

• All these operations are expressed using the assignment operation

79

Deletion
• A delete request is expressed similarly to a query, except instead of

displaying tuples to the user, the selected tuples are removed from

the database

– Can only delete whole tuples

– cannot delete values on particular attributes

• A deletion is expressed in relational algebra by:

– 𝒓 ← 𝒓 − 𝑬, where 𝒓 is a relation and 𝑬 is a relational algebra query

80

Deletion Examples
• Delete all account records in the Perryridge branch.

• Delete all loan records with amount in the range of 0 to 50

• Delete all accounts at branches located in Shanghai

account ¬ account – s branch_name = “Perryridge” (account)

loan ¬ loan – s amount ³ 0 and amount £ 50 (loan)

r1 ¬ s branch_city = “Shanghai” (account branch)
r2 ¬ Õ account_number, branch_name, balance (r1)
r3 ¬ Õ customer_name, account_number (r2 depositor)
account ¬ account – r2

depositor ¬ depositor – r3

81

Insertion

• To insert data into a relation, we either:

– specify a tuple to be inserted

– write a query whose result is a set of tuples to be inserted

• In relational algebra, an insertion is expressed by:

– 𝒓 ← 𝒓 ∪ 𝑬, where 𝒓 is a relation and 𝑬 is a relational algebra expression.

– The insertion of a single tuple is expressed by letting 𝑬 be a constant

relation containing one tuple

82

Insertion Examples
• Insert information in the database specifying that Smith has

$1200 in account A_973 at the Perryridge branch.

• Provide as a gift for all loan customers in the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account.

account ¬ account È {(A_973, “Perryridge”, 1200)}
depositor ¬ depositor È {(“Smith”, A_973)}

r1 ¬ (sbranch_name = “Perryridge” (borrower loan))
account ¬ account È Õloan_number, branch_name, 200 (r1)
depositor ¬ depositor È Õcustomer_name, loan_number(r1)

83

Updating
• A mechanism to change a value in a tuple without changing all

other values in the tuple
• Use the generalized projection operator to do this task

– 𝒓 ← 𝜫𝑭𝟏,𝑭𝟐,…,𝑭𝒊(𝒓)
– Each 𝑭𝒊 is either

• the 𝒊th attribute of 𝒓, if the 𝑖th attribute is not updated, or
• if the attribute to be updated, 𝑭𝒊 is an expression, involving only

constants and the attributes of 𝒓, which gives the new value for
the attribute

84

Update Examples
• Make interest payments by increasing all balances by 5 percent.

where AN, BN and BAL stand for account_number, branch_name and balance,
respectively

• Pay all accounts with balances over $10,000 6 percent interest and
pay all others 5 percent

account ¬ Õ AN, BN, BAL * 1.05 (account)

account ¬ Õ AN, BN, BAL * 1.06 (s BAL > 10000 (account))
È ÕAN, BN, BAL * 1.05 (sBAL £ 10000 (account))

85

Updating

• To select some tuples from 𝒓 to update, we can use the following

expression:

𝒓 ← 𝜫𝑭𝟏,𝑭𝟐,…,𝑭𝒏(𝝈𝑷 𝒓) ∪ (𝒓 − 𝝈𝑷(𝒓))

where 𝑷 denotes the selection condition that chooses which tuples to

update

86

Views（视图）
• In some cases, it is not desirable for all users to see the entire

logical model
• Consider a person who needs to know a customer’s loan number but

has no need to see the loan amount. This person should see a
relation described, in the relational algebra, by

𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆,𝒍𝒐𝒂𝒏_𝒏𝒖𝒎𝒃𝒆𝒓,𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆(𝒃𝒐𝒓𝒓𝒐𝒘𝒆𝒓 ⋈ 𝒍𝒐𝒂𝒏)

• Any relation that is not of the conceptual model but is made visible
to a user as a “virtual relation” is called a view

87

View Definition
• A view is defined using the create view statement which has the form

create view v as < query expression >
• Once a view is defined, the view name can be used to refer to the

virtual relation that the view generates
• View definition is not the same as creating a new relation by evaluating

the query expression
– Rather, a view definition causes the saving of an expression

– the expression is substituted into queries using the view

88

View Examples
• Consider the view (named all_customer) consisting of branches and

their customers

• We can find all customers of the Perryridge branch by writing:

create view all_customer as
Õbranch_name, customer_name (depositor account)

È Õbranch_name, customer_name (borrower loan)

Õcustomer_name (sbranch_name = “Perryridge” (all_customer))

89

Updates Through View
• Must be translated to modifications of the actual relations
• Consider the person who needs to see all loan data in the loan relation

except amount. The view given to the person, branch_loan, is defined as:
create view branch_loan as 𝜫𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆,𝒍𝒐𝒂𝒏_𝒏𝒖𝒎𝒃𝒆𝒓(𝒍𝒐𝒂𝒏)

• Since we allow a view name to appear wherever a relation name is allowed,
the person may write:

𝒃𝒓𝒂𝒏𝒄𝒉_𝒍𝒐𝒂𝒏 ← 𝒃𝒓𝒂𝒏𝒄𝒉_𝒍𝒐𝒂𝒏 ∪ {("Perryridge", 𝑳_𝟑𝟕)}
• An insertion into relation loan requires a value for amount. The insertion

can be handled by either.
– rejecting the insertion
– inserting a tuple (L_37, “Perryridge”, null)

90

Updates Through Views (Cont.)
• Some updates through views are impossible to translate into database

relation updates
𝒄𝒓𝒆𝒂𝒕𝒆 𝒗𝒊𝒆𝒘 𝒗 𝒂𝒔 (𝝈𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆;"𝑷𝒆𝒓𝒓𝒚𝒓𝒊𝒅𝒈𝒆"(𝒂𝒄𝒄𝒐𝒖𝒏𝒕)

𝒗 ← 𝒗 ∪ (𝑳_𝟗𝟗, "Downtown", 𝟐𝟑)
• Others cannot be translated uniquely

𝒂𝒍𝒍_𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 ← 𝒂𝒍𝒍_𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 ∪ {(Perryridge, "𝑱𝒐𝒉𝒏")}
– Have to choose loan or account, and create a new loan/account number

create view all_customer as
Õbranch_name, customer_name (depositor account)

È Õbranch_name, customer_name (borrower loan)

91

Views Defined Using Other Views
• One view may be used to define another view

• A view relation 𝒗𝟏is said to depend directly (直接依赖) on a view

relation 𝒗𝟐 if 𝒗𝟐 is used in the expression defining 𝒗𝟏

• A view relation 𝒗𝟏 is said to depend（依赖）on view relation 𝒗𝟐 if

either 𝒗𝟏 depends directly to 𝒗𝟐 or there is a path of

dependencies from 𝒗𝟏 to 𝒗𝟐

• A view relation 𝒗 is said to be recursive (递归) if it depends on

itself

92

View Expansion
• A way to define the meaning of views defined in terms of other views
• Let view 𝒗𝟏 be defined by an expression 𝒆𝟏 that may itself contain

uses of view relations
• View expansion of an expression repeats the following replacement

step:
repeat

Find any view relation 𝒗𝒊 in 𝒆𝟏
Replace the view relation 𝒗𝒊 by the expression defining 𝒗𝒊

until no more view relations are present in 𝒆𝟏
• As long as the view definitions are not recursive, this loop will

terminate

93

Summary
• Relation/table

– Attributes, domain, null value
– Keys: superkeys, candidate keys, primary keys, foreign keys
– Relational schema, relation instance, tuple

• Relational Database
– A set of relations connected by foreign-key constratints
– Database schema/database schema diagram

• Relational algebra
– Basic operations

• select s, project P, Cartesian product ´, set union È, set difference -, rename r
– Additional operations

• set intersection Ç, natural join ⋈, conditional join, outer join, division ÷, assignment ¬
– Generalized projection and aggregate functions
– Insertion, delete, update

• View

94

Homework

• Exercises

– 2.1, 2.6, 2.7, 2.8, 2.15, 2.18

• Submission
– E-learning系统，上传单个word或者PDF文件

– Deadline: 12:00pm, March 5, 2025

95

End of Lecture 2

