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Content of the Course 
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction 
• Part 1  Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model 
(data model, relational algebra) 

– Lect. 3 (Mar. 6) - Ch3&4: SQL 
(Introduction and intermediate)

– Lect. 4 (Mar. 13) - Ch5: Advanced SQL 
• Part 2  Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design 
based on E-R model 

– Lect. 6 (Mar. 27) - Ch7: Relational database 
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database 
design (Part II)

• Midterm exam:  Apr. 10

• Part 3  Data Storage & Indexing 
– Lect. 7 (Apr. 17) - Ch12/13: Storage 

systems & structures
– Lect. 8 (Apr. 24) - Ch14: Indexing

• Part 4  Query Processing & Optimization 
– May 1, holiday, no classes
– Lect. 9 (May 8) - Ch15: Query processing
– Lect. 10 (May 15 ) - Ch16: Query 

optimization 
• Part 5 Transaction Management

– Lect. 11 (May 22) - Ch17: Transactions  
– Lect. 12 (May 29) - Ch18: Concurrency 

control
– Lect. 13 (Jun. 5) - Ch19: Recovery system
– Lect. 14 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18
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Two Tables of the University Database

Instructor table Student table
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Schema Diagram of the University Database
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E-R Diagram for a Banking Enterprise

multi-valued 
attribute

derived attribute

Weak entity sets

account-branch
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The Banking Database Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a  multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• cust_banker = (customer_id, employee_id, type)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)
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Outline

F Relational Database Model 
– The structure of a relation
– Relational database and
– Keys 
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations
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An Example of Relation/Table
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Basic Structure of a Relation
• Given sets 𝐷!, 𝐷", ⋯ , 𝐷#, a relation 𝑟 is a subset of 𝐷!×𝐷"×⋯×𝐷#, i.e., a set 

of n-tuples (𝑎!, 𝑎", ⋯ , 𝑎#) where each 𝑎$ ∈ 𝐷$(𝑖 = 1, …𝑛)

• E.g., if
customer_name = {Jones, Smith, Curry, Lindsay}
customer_street = {Main, North, Park}
customer_city = {Harrison, Rye, Pittsfield}

then
r = {(Jones, Main, Harrison), (Smith, North, Rye),

(Curry, North, Rye), (Lindsay, Park, Pittsfield)}
is a relation over customer_name x customer_street x customer_city

n-tuples: n元组
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Attribute (属性)
• Each relation consists of a set of attributes 𝐴!, 𝐴", … , 𝐴#

• The domain of an attribute is the whole set of available and legal 

values of the attribute

• Attribute values are (normally) required to be atomic (原子性)

– Multi-valued attributes and composite attributes are not atomic

• 多值属性：电话号码；复合属性：通信地址

• The special value null is a member of every domain. It may cause 

complications in the definition of many operations
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Relation Schema (关系模式)
• 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 are attributes, and 𝑹 = (𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏) is a relation 

schema, 
• e.g.,  

– instructor_schema =(id, name, dept_name, salary)
– customer_schema=(custom_id, custom_ name, custom_ street, custom_ city)

• 𝒓(𝑹) is a relation on the relation schema 𝑹, 
• e.g., 

– instructor(instructor_schema)
– customer(customer_schema)
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Relation Instance (关系实例)
• A relation instance corresponds to the current values of a 

relation, which is specified by a table
• An element 𝒕 of 𝒓 is a tuple (元组), represented by a row in the 

table

Tuples/Rows

Attributes/Columns
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Relation vs. Variable
• Relation schema vs. Variable type
• Relation instance vs. Variable value
• For example

– int vs.    customer_schema =(id, name, street, city)
– int A vs.    customer(customer_schema)
– A=10 vs.
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Relations are Unordered
• The order of tuples/attributes in a relation is irrelevant. Tuples 

could be stored in an arbitrary order
• E.g., instructor relation with unordered tuples
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Outline

F Relational Database Model 
– The structure of a relation
– Relational database
– Keys 
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations
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Database
• A database consists of multiple relations

• Why NOT use a single relation?

• Storing all information as a single relation results in

– repetition of information, e.g., one department has many students, 

record the information of both department and student

– the need for null values, e.g., represent a customer without an account

• How many relations should have?

– Normalization (规范化) theory (Chapter 7) deals with how to design relational 

schemas
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Instructor relation
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The customer Relation The depositor Relation

E-R Diagram for the Banking Enterprise
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Outline

F Relational Database Model 
– The structure of a relation
– Relational database
– Keys
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations
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Keys (码、键) 
• Superkey（超码）

– Let 𝑲 ⊆ 𝑹, 𝑲 is a superkey of relation schema 𝑹 if the values for 𝑲 are 
sufficient to identify a unique tuple of each possible relation 𝒓(𝑹)

– E.g., {instructor_id},  {instructor_id, instructor_name} and 
{instructor_name} are superkeys of instructor, if no two instructors 
have the same name

– If tuples 𝒕𝟏 ≠ 𝒕𝟐, then 𝒕𝟏[𝑲] ≠ 𝒕𝟐[𝑲]
• Candidate key（候选码）

– 𝑲 is a candidate key if 𝑲 is minimal
– E.g., {instructor_name} is a candidate key for instructor, since it is a 

superkey (assuming no two instructors have the same name)
• Primary key（主码）/ Primary key constraint

– A candidate key is chosen by the DB designer to identify tuples within a 
relation
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Keys (Cont.) 
• Foreign key(外键/外码)

– A relation schema 𝑹𝟏, may include among its attributes the primary key 
of another relation schema 𝑹𝟐. This attribute is called a foreign key 
from 𝑹𝟏, referencing 𝑹𝟐

– The relation 𝒓𝟏 is called the referencing relation (参照关系) of the 
foreign key dependency, and 𝒓𝟐 is called the referenced relation (被参
照关系) of the foreign key dependency

• Foreign key constraint / Referential integrity 
constraint (外键约束/参照完整性约束)
– The values appearing in specified attributes of any tuple in the 

referencing relation should also appear in specified attributes of at least 
one tuple in the referenced relation
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The University Database Schema
• classroom(building, room_number, capacity)
• department(dept_name, building, budget) 
• course(course_id, title, dept_name, credits) 
• instructor(ID, name, dept_name, salary)
• section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
• teaches(ID, course_id, sec_id, semester, year)
• student(ID, name, dept_name, tot_cred)
• takes(ID, course_id, sec_id, semester, year, grade) 
• advisor(s_ID, i_ID)
• time slot(time_slot_id, day, start_time, end_time)
• prereq(course_id, prereq_id)
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The Banking Database Schema
• branch = (branch_name, branch_city, assets)
• customer = (customer_id, customer_name, customer_street, customer_city)
• loan = (loan_number, amount)
• account = (account_number, balance)
• employee = (employee_id, employee_name, telephone_number, start_date)

• dependent_name = (employee_id, dname) (derived from a  multivalued attribute)

• account_branch = (account_number, branch_name)
• loan_branch = (loan_number, branch_name)
• borrower = (customer_id, loan_number)
• depositor = (customer_id, account_number, access_date)
• cust_banker = (customer_id, employee_id, type)
• works_for = (worker_employee_id, manager_employee_id)

• payment =(loan_number,payment_number,payment_date,payment_amount)

• savings_account = (account_number, interest_rate)
• checking_account = (account_number, overdraft_amount)
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Determining Keys from E-R Sets

p Strong entity set: has a primary key
p Weak entity set: may not have sufficient attributes to form a 

primary key
n Discriminator (分辨符) plus the Key of the identifying entity 

set (标识实体集, or owner entity set 属主实体集) 
p Relationship set

n Union of keys of the related entity sets
(discussed later in Chapter 6)  
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The customer Relation The depositor Relation

E-R Diagram for the Banking Enterprise
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Outline

F Relational Database Model 
– The structure of a relation
– Relational database
– Keys 
– Database schema

• Relational Algebra
– Relational query languages
– Relational operations
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Database Schema
• Database schema

– All the schemas of relations, along with primary key and foreign key 
dependencies in a database consist of the database’s schema

• Database schema diagram (模式图)
– A database schema can be depicted pictorially by a schema diagram



29

Schema Diagram 

Schema Diagram (模式图) 
for the banking enterprise

Banking database

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)
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Schema diagram for the university database
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Outline

• Relational Database Model 
– The structure of a relation
– Relational database
– Keys 
– Database schema

FRelational Algebra
– Relational query languages
– Relational operations
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Relational Query Languages
• Query Languages used to request information from the database

– Imperative languages, functional languages, declarative languages

• Categories of languages
– Procedural

• Relational Algebra（关系代数）: functional language
– Non-procedural 

• SQL（结构化查询语言）: mainly, it is declarative, but it also has 
imperative, functional features

• Tuple Relational Calculus（元组关系演算）
– R-S＝{t│R(t)∧┐S（t）}， R∪S={t│R(t)∨S(t)}

• Domain Relational Calculus（域关系演算）
– {<A, B, C> | <A, B, C> ∈ Student ∧ C = “Monitor" }
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Outline

• Relational Database Model 
– The structure of a relation
– Relational database
– Keys 
– Database schema

FRelational Algebra
– Relational query languages
– Relational operations
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Relational Algebra 
• A  procedural language consisting  of a set of operations that take 

one or more relations as input and produce a new relation as the 
result

• Six basic operations
– Select (选择)；水平选择，选择行/元组
– Project (投影)；垂直选择，选择列/属性
– Union (集合并)
– Set difference (集合差)
– Cartesian product (笛卡尔积)
– Rename (重命名)

• These operators take one or two relations as inputs and give a new 
relation as a result
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Select Operation

• Notation: 𝝈𝑷 𝒓 = 𝒕 𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝑷 𝒕
– 𝑷 is the selection predicate(选择谓词）consisting of ∧(and), ∨(or), 

¬(not), =, ≠, <, >, ≤, ≥
– E.g.,  

A B C D

a

a

b

b

a

b

b

b

1
5
12
23

7
7
3
10

A B C D

a

b

a

b

1
23

7
10

relation 𝒓 𝝈𝑨(𝑩 ∧ 𝑫,𝟓(𝒓)
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Select Operation (Cont.)
• E.g., select those tuples of the instructor relation where the 

instructor is in the “Physics” department
– Query

s dept_name=“Physics” (instructor)

– Result

Instructor relation
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Select Operation (Cont.)
• Allow comparisons using =, ¹, >, ³, <, £ in the selection predicate. 
• Can combine several predicates into a larger predicate by using the 

connectives（连接词）: Ù (and), Ú (or), ¬ (not)
– Example: Find the instructors in Physics with a salary greater $90,000

s dept_name=“Physics” Ù salary > 90,000 (instructor)
• The select predicate may  include comparisons between two attributes. 

– Example: find all departments whose name is the same as their building 
name:
s dept_name = building (department)
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Project Operation
• Notation: 𝜫𝑨𝟏,𝑨𝟐,…,𝑨𝒌(𝒓)

– 𝑨𝟏, 𝑨𝟐, …, 𝑨𝒌 are attribute names and 𝒓 is a relation name
– The result is defined as the relation of 𝒌 columns obtained by erasing 

the columns that are not listed
– Duplicate rows are removed from result, since relations are sets
– E.g., 

A B C

a

a

b

b

10
20
30
40

1
1
1
2

A C

a

a

b

b

1
1
1
2

=

A C

a

b

b

1
1
2

relation 𝒓 𝜫𝑨,𝑪(𝒓)
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Project Operation (Cont.)
• E.g., eliminate the dept_name attribute of instructor
• Query:

ÕID, name, salary (instructor)
• Result:

Instructor relation
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Union Operation
• Notation: 𝒓 ∪ 𝒔 = {𝒕|𝒕 ∈ 𝒓 𝒐𝒓 𝒕 ∈ 𝒔}

– 𝒓, 𝒔 must have the same arity (同元的), i.e., the same number of attributes
– The attribute domains must be compatible (相容的）

• E.g., the 2nd column of 𝒓 deals with the same type of values as does the 2nd column of 𝒔
– E.g., find all courses taught in the Fall 2022 semester, or in the Spring 2023 

semester, or in both: 
Õcourse_id(ssemester=“Fall”Λ year=2022 (section)) È Õcourse_id (ssemester=“Spring” Λ year=2023 (section))

A B

a

a

b

1
2
1

A B

a

b

2
3

s

A B

a

a

b

b

1
2
1
3relations 𝒓, 𝒔

𝒓 ∪ 𝒔

r
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Set Difference Operation
• Notation: 𝒓 − 𝒔 = {𝒕|𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝒕 ∉ 𝒔}

– Set differences must be taken between compatible relations, i.e., 
𝑟 and 𝑠 must have the same arity and attribute domains

– E.g.,

r

A B

a

a

b

1
2
1

A B

a

b

2
3

s

A B

a

b

1
1

relations 𝒓, 𝒔 𝒓 − 𝒔
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Set Difference Operation (Cont.)
• E.g., to find all courses taught in the Fall 2022 semester, but not in 

the Spring 2023 semester

Õcourse_id(ssemester=“Fall”Λ year=2022 (section)) − 
Õcourse_id (ssemester=“Spring”Λ year=2023 (section))
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Cartesian Product Operation
• Notation: 𝒓×𝒔 = {𝒕𝒒|𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝒒 ∈ 𝒔}

– The attributes of 𝒓(𝑹) and 𝒔(𝑺) should be disjoint, i.e., 𝑹 ∩ 𝑺 = ∅
– If the attributes of 𝒓(𝑹) and 𝒔(𝑺) are not disjoint, then renaming must 

be used
A B

a
a
a
a
b
b
b
b

1
1
1
1
2
2
2
2

C D

a
b
b
g
a
b
b
g

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B

a

b

1
2

r

C D

a
b
b
g

10
10
20
10

E

a
a
b
b

s

relations 𝒓, 𝒔 𝒓×𝒔
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instructor X teaches table
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Cartesian Product Operation (Cont.)
• sinstructor.id = teaches.id (instructor  x teaches))
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Composition of Operations
• Build expressions using multiple operations

– E.g., 𝝈𝑨(𝑪(𝒓×𝒔)

A B

a
a
a
a
b
b
b
b

1
1
1
1
2
2
2
2

C D

a
b
b
g
a
b
b
g

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E

a
b
b

1
2
2

a
b
b

10
20
20

a
a
b

𝒓×𝒔

𝝈𝑨(𝑪(𝒓×𝒔)

A B

a

b

1
2

r

C D

a
b
b
g

10
10
20
10

E

a
a
b
b

s

relations 𝒓, 𝒔
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Rename Operation (更名运算)
• Allows us to name, and therefore to refer to, the results of 

relational-algebra expressions.
– E.g., 𝝆𝑿(𝑬) returns the expression 𝑬 under the name 𝑿

• If a relational-algebra expression 𝑬 has arity 𝒏
– 𝝆𝑿(𝑨𝟏,𝑨𝟐,…,𝑨𝒏)(𝑬) returns the result of expression 𝑬 under the name 𝑿, 

and with the attributes renamed to 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏
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Notes about Relational Languages

• Each query input is a table (or a set of tables)

• Each query output is a table.

• All data in the output table appears  at least in one of the input 

tables
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Schema for Following Examples

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)
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Example Queries (1)
• Find all loans of over $1200 

• Find the loan number for each loan of an amount greater than 
$1200 

𝜫𝒍𝒐𝒂𝒏_𝒏𝒖𝒎𝒃𝒆𝒓(𝝈𝒂𝒎𝒐𝒖𝒏𝒕5𝟏𝟐𝟎𝟎(𝒍𝒐𝒂𝒏))

𝝈𝒂𝒎𝒐𝒖𝒏𝒕5𝟏𝟐𝟎𝟎(𝒍𝒐𝒂𝒏)
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Example Queries (2)
• Find the names of all customers who have a loan, an account, or 

both, from the bank

𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆 𝒃𝒐𝒓𝒓𝒐𝒘𝒆𝒓 ∪ 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆 𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓
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Example Queries (3)
• Find the names of all customers who have a loan at the Perryridge

branch

• Find the names of all customers who have a loan at the Perryridge 
branch but do not have an account at any branch of the bank

Õcustomer_name (sbranch_name=“Perryridge”

(sborrower.loan_number = loan.loan_number(borrower x loan)))

Õcustomer_name (sbranch_name = “Perryridge”

(sborrower.loan_number = loan.loan_number(borrower x loan))) – Õcustomer_name(depositor)
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Example Queries (4)
• Find the names of all customers who have a loan at the Perryridge

branch
• Query 1

• Query 2

Õcustomer_name(sloan.loan_number = borrower.loan_number
((sbranch_name = “Perryridge”(loan)) x  borrower))

Õcustomer_name(sbranch_name = “Perryridge”
(sborrower.loan_number = loan.loan_number(borrower x loan)))
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Example Queries (5)
• Find the largest account balance
• Strategy:

– Find those balances that are not the largest
– Rename account relation as 𝑑 so that we can compare each account 

balance with all others
– Use set difference to find those account balances that were not 

found in the earlier step

Õbalance(account) 
- Õaccount.balance

(saccount.balance < d.balance (account x rd (account)))
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Relational Expressions
• A basic expression in the relational algebra consists of either of the following

– A relation in the database
– A constant relation, e.g., {(22222, Einsteir, Physics, 9500), (76543, Singh, Finance, 

80000)}
• The result of any relational operation on a basic expression is relational-

algebra expression 
• Let 𝑬𝟏 and 𝑬𝟐 be relational-algebra expressions, the following are all 

relational-algebra expressions:
– 𝑬𝟏 ∪ 𝑬𝟐
– 𝑬𝟏 − 𝑬𝟐
– 𝑬𝟏×𝑬𝟐
– 𝝈𝒑(𝑬𝟏), 𝑷 is a predicate on attributes in 𝑬𝟏
– 𝜫𝒔(𝑬𝟏), 𝑺 is a list consisting of some of the attributes in 𝑬𝟏
– 𝝆𝑿 𝑬𝟏 , 𝑿 is the new name for the result of 𝑬𝟏
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Additional Operations
• Additional operations

– Set intersection (集合交)
– Natural join (自然连接)
– Outer join（外连接）
– Division (除)
– Assignment (赋值)

• Additional operations do not add any power to the relational 
algebra, but simplify common queries
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Set Intersection Operation
• Notation: 𝒓 ∩ 𝒔 = {𝒕|𝒕 ∈ 𝒓 𝒂𝒏𝒅 𝒕 ∈ 𝒔}

– 𝒓, 𝒔 have the same arity
– the attributes of 𝒓 and 𝒔 are compatible
– Note: 𝒓 ∩ 𝒔 = 𝒓 − (𝒓 − 𝒔)

A       B

a
a
b

1
2
1

A       B

a
b

2
3

r s

Relations 𝒓, 𝒔:

A       B

a 2

𝒓 ∩ 𝒔:

𝑟 𝑠

𝒓 − 𝒔
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Set Intersection Operation (Cont.)

• E.g., Find the set of all courses taught in both the Fall 2022 and 

the Spring 2023 semesters.

Õcourse_id (s semester=“Fall” Λ year=2022 (section)) Ç

Õcourse_id (s semester=“Spring” Λ year=2023 (section))
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Natural Join Operation
• Notation: 𝒓 ⋈ 𝒔
• Let 𝒓 and 𝒔 be the relations on schemas 𝑹 and 𝑺 respectively. Then 

𝒓 ⋈ 𝒔 is a relation on schema 𝑹 ∪ 𝑺 obtained as follows
– Consider each pair of tuples 𝒕𝒓 from 𝒓 and 𝒕𝒔 from 𝒔
– If 𝒕𝒓 and 𝒕𝒔 have the same value on each of the attributes in 𝑹 ∩ 𝑺, add a 

tuple 𝒕 to the result, where
• 𝒕 has the same value as 𝒕𝒓 on 𝒓
• 𝒕 has the same value as 𝒕𝒔 on 𝒔

• E.g., 𝑹 = (𝑨, 𝑩, 𝑪, 𝑫), 𝑺 = (𝑬,𝑩,𝑫)
– Result schema: (𝑨, 𝑩, 𝑪, 𝑫, 𝑬)
– 𝒓 ⋈ 𝒔 is defined as: 𝜫𝒓.𝑨, 𝒓.𝑩, 𝒓.𝑪, 𝒓.𝑫, 𝒔.𝑬(𝝈𝒓.𝑩(𝒔.𝑩 ⋀𝒓.𝑫(𝒔.𝑫(𝒓×𝒔))
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Natural Join Operation – Example

A B

a
b
g
a
d

1
2
4
1
2

C D

a
g
b
g
b

a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E

a
b
g
d
Î

r s

A B

a
a
a
a
d

1
1
1
1
2

C D

a
a
g
g
b

a
a
a
a
b

E

a
g
a
g
d

𝒓 ⋈ 𝒔:

Relations 𝒓, 𝒔:
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Natural Join Operation(cont.)
• Let 𝒓(𝑹) and 𝒔(𝑺) be relations without any attributes in common, 

i.e., 𝑹 ∩ 𝑺 = ∅. Then, 𝒓 ⋈ 𝒔 = 𝒓×𝒔

• 𝜽-join operation 

– An extension to the natural-join operation that allows us to combine a 

selection and a Cartesian product into a single operation. 

– Consider relations 𝒓(𝑹) and 𝒔(𝑺), and let 𝜽 be a predicate on 

attributes in the schema 𝑹 ∪ 𝑺. The theta join 𝒓 ⋈𝜽 𝒔 is defined as 

follows: 𝒓 ⋈𝜽 𝒔 = 𝝈𝜽(𝒓×𝒔)
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Join Operation – Example

Relations 𝒓, 𝒔:

A   B   C
a1  b1  5
a1  b2  6
a2  b3  8
a2  b4 12

B   E
b1  3
b2  7
b3 10
b3  2
b5  2

A  R.B C  S.B E
a1  b1  5  b2   7
a1  b1  5  b3 10
a1  b2  6  b2   7
a1  b2  6  b3 10
a2  b3  8  b3 10

A  R.B C  S.B E
a1  b1  5  b1   3
a1  b2  6  b2  7
a2  b3  8  b3 10
a2  b3  8  b3  2

A   B C   E
a1  b1  5  3
a1  b2  6  7
a2  b3  8 10
a2  b3  8  2

r: s:

𝒓 ⋈𝒓.𝑩;𝒔.𝑩 𝒔𝒓 ⋈ 𝒔 𝒓 ⋈𝑪=𝑬 𝒔
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Outer Join

• An extension of the join operation that avoids loss of information

• Computes the join and then adds tuples from one relation that does 

not match tuples in the other relation to the result of the join

• Uses null values:

– null signifies that the value is unknown or does not exist 

– All comparisons involving null are (roughly speaking) false by definition.
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Outer Join – Example

customer-name loan-number
Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount

L-170
L-230
L-260

branch-name

Downtown
Redwood
Perryridge

Relation loan Relation borrower

loan-number amount
L-170
L-230

3000
4000

customer-name
Jones
Smith

branch-name
Downtown
Redwood

Inner Join: loan     Borrower

Jones
Smith
null

loan-number amount
L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name
Downtown
Redwood
Perryridge

Left Outer Join: loan        Borrower

loan-number amount
L-170
L-230
L-155

3000
4000
null

customer-name
Jones
Smith
Hayes

branch-name
Downtown
Redwood
null

Right Outer Join: loan borrower

loan-number amount
L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name
Jones
Smith
null
Hayes

branch-name
Downtown
Redwood
Perryridge
null

Full Outer Join: loan      borrower
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Division Operation
• Notation: 𝒓 ÷ 𝒔

– 𝒓 and 𝒔 are relations on schemas 𝑹 and 𝑺, respectively
• 𝑹 = (𝑨𝟏, … , 𝑨𝒎, 𝑩𝟏, … , 𝑩𝒏)
• 𝑺 = (𝑩𝟏, … , 𝑩𝒏)

– The result of 𝒓 ÷ 𝒔 is a relation on schema 𝑹 − 𝑺 = (𝑨𝟏, … , 𝑨𝒎), i.e., 
𝒓 ÷ 𝒔 = {𝒕|𝒕 ∈ 𝜫𝑹@𝑺 𝒓 ⋀∀𝒖 ∈ 𝒔(𝒕𝒖 ∈ 𝒓)}

• A tuple 𝒕 is in 𝒓 ÷ 𝒔 if and only if both of two conditions hold:
– 𝒕 is in 𝜫𝑹>𝑺(𝒓)
– For every tuple 𝒕𝒔 in 𝒔, there is a tuple 𝒕𝒓 in 𝒓 satisfying:

• 𝒕𝒓 𝑺 = 𝒕𝒔[𝑺]
• 𝒕𝒓 𝑹 − 𝑺 = 𝒕
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Division Operation – Example

r ÷ s : A

a

b

Relations r, s : B

1
2

A B

a
a
a
b
g
d
d
d
Î
Î
b

1
2
3
1
1
1
3
4
6
1
2

r

s
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Division Operation (Cont.)
• Definition in terms of the basic algebra operation

– Let 𝒓(𝑹) and 𝒔(𝑺) be relations, and let 𝑺 ⊆ 𝑹

– 𝒓 ÷ 𝒔 = 𝜫𝑹>𝑺 𝒓 − 𝜫𝑹>𝑺( 𝜫𝑹>𝑺 𝒓 ×𝒔 − 𝜫𝑹>𝑺,𝑺 𝒓 )

• To see why

– 𝜫𝑹>𝑺,𝑺(𝒓) simply reorders attributes of 𝒓

– 𝜫𝑹>𝑺 (𝜫𝑹>𝑺 𝒓 ×𝒔 − 𝜫𝑹>𝑺,𝑺(𝒓)) gives those tuples 𝒕 in 𝜫𝑹>𝑺(𝒓) such 

that for some tuple 𝒖 ∈ 𝒔, 𝒕𝒖 ∉ 𝒓
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Assignment Operation
• The assignment operation (←) provides a convenient way to express 

complex queries
– Write query as a sequential program consisting of

• a series of assignments 
• followed by an expression whose value is displayed as a result of the query

– Assignment must be made to a temporary relation variable
• Example: write 𝒓 ÷ 𝒔 as:

– 𝒕𝒆𝒎𝒑𝟏 ← 𝜫𝑹+𝑺(𝒓)
– 𝒕𝒆𝒎𝒑𝟐 ← 𝜫𝑹+𝑺( 𝒕𝒆𝒎𝒑𝟏×𝒔 − 𝜫𝑹+𝑺,𝑺 𝒓 )
– 𝒓𝒆𝒔𝒖𝒍𝒕 = 𝒕𝒆𝒎𝒑𝟏 − 𝒕𝒆𝒎𝒑𝟐

• The result to the right of the ← is assigned to the relation variable 
on the left of the ←
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Example Queries (6)
• Find all the customers who have accounts from at least the 

“Downtown” and the “Uptown” branches
• Query 1

– 𝜫𝑪𝑵 𝝈𝑩𝑵1"𝑫𝒐𝒘𝒏𝒕𝒐𝒘𝒏" 𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈ 𝒂𝒄𝒄𝒐𝒖𝒏𝒕 ∩ 𝜫𝑪𝑵(𝝈𝑩𝑵1"𝑼𝒑𝒕𝒐𝒘𝒏"(𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈
𝒂𝒄𝒄𝒐𝒖𝒏𝒕))

– where CN denotes customer_name and BN denotes branch_name
• Query 2

– 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆,𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆(𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈ 𝒂𝒄𝒄𝒐𝒖𝒏𝒕) ÷ 𝝆𝒕𝒆𝒎𝒑(𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆)
( “𝑫𝒐𝒘𝒏𝒕𝒐𝒘𝒏” , “𝑼𝒑𝒕𝒐𝒘𝒏” )

– Note that Query2 uses a constant relation
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Example Queries (7)

• Find all customers who have an account at all branches located in 

Shanghai

– 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆,𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆 𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓 ⋈ 𝒂𝒄𝒄𝒐𝒖𝒏𝒕 ÷

𝜫𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆(𝝈𝒃𝒓𝒂𝒏𝒄𝒉_𝒄𝒊𝒕𝒚;"𝑺𝒉𝒂𝒏𝒈𝒉𝒂𝒊" 𝒃𝒓𝒂𝒏𝒄𝒉 )
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Extended Relational Algebra Operations

• Generalized Projection（广义投影）

• Aggregate Functions （聚合函数）
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Generalized Projection
• Extends the projection operation by allowing arithmetic functions 

to be used in the projection list 𝜫𝑭𝟏,𝑭𝟐,…,𝑭𝒏(𝑬)

– 𝑬 is any relational-algebra expression

– Each of 𝑭𝟏, 𝑭𝟐, … , 𝑭𝒏 is a arithmetic expression involving constants and 

attributes in the schema of 𝑬

• Given relation credit_info(customer_name, limit, credit_balance), 
find how much more each person can spend: 

– 𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆, 𝒍𝒊𝒎𝒊𝒕>𝒄𝒓𝒆𝒅𝒊𝒕_𝒃𝒂𝒍𝒂𝒏𝒄𝒆(𝒄𝒓𝒆𝒅𝒊𝒕_𝒊𝒏𝒇𝒐)
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Aggregate Functions and Operations
• Aggregation function takes a collection of values and returns a 

single value as a result
– avg: average value
– min: minimum value
– max: maximum value
– sum: sum of values
– count: number of values

• Aggregate operation in relational algebra
– 𝑮𝟏,𝑮𝟏,…,𝑮𝒏𝒈𝑭𝟏 𝑨𝟏 ,𝑭𝟐 𝑨𝟐 ,…,𝑭𝒏 𝑨𝒏 𝑬 (先分组,再聚合）

• 𝑬 is any relational-algebra expression
• 𝑮𝟏, 𝑮𝟐, … , 𝑮𝒏 is a list of attributes on which to group (can be empty)
• Each 𝑭𝒊 is an aggregate function （再做聚合）
• Each 𝑨𝒊 is an attribute name
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Aggregate Operation – Example

A B

a
a
b
b

a
b
b
b

C

7
7
3
10

Sum(C)

27

Relation r : g sum(c) (r) :

branch_name account_number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

Relation account  grouped by branch_name:

branch_name balance

Perryridge
Brighton
Redwood

1300
1500
700

branch_name g sum(balance) (account)
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Aggregate Functions (Cont.)
• Result of aggregation does not have a name

– Can use rename operation to give it a name
– For convenience, we permit renaming as part of aggregate operation

branch_name g sum(balance) as sum_balance (account)
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Null Values
• It is possible for tuples to have a null value for some of their 

attributes
– null signifies an unknown value or that a value does not exist

• The result of any arithmetic expression involving null is null
• Aggregate functions simply ignore null values

– Is an arbitrary decision?  Could have returned null as result instead?
– We follow the semantics of SQL in its handling of null values

• For duplicate elimination and grouping, null is treated like any other 
value, and two nulls are assumed to be the same
– Alternative: assume each null is different from each other
– Both are arbitrary decisions,  so we simply follow SQL
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Null Values
• Three-valued logic (三值逻辑) using the truth value unknown

– OR: (unknown or true)           = true, 
(unknown or false)          = unknown
(unknown or unknown)     = unknown

– AND: (true and unknown)       = unknown,   
(false and unknown)      = false,
(unknown and unknown) = unknown

– NOT: (not unknown) = unknown
– In SQL “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of select predicate is treated as false if it evaluates to unknown
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Modification of the Database

• The content of the database may be modified using the following 

operations:

– Deletion

– Insertion

– Updating

• All these operations are expressed using the assignment operation
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Deletion
• A delete request is expressed similarly to a query, except instead of 

displaying tuples to the user, the selected tuples are removed from 

the database

– Can only delete whole tuples

– cannot delete values on particular attributes

• A deletion is expressed in relational algebra by: 

– 𝒓 ← 𝒓 − 𝑬, where 𝒓 is a relation and 𝑬 is a relational algebra query
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Deletion Examples
• Delete all account records in the Perryridge branch.

• Delete all loan records with amount in the range of 0 to 50

• Delete all accounts at branches located in Shanghai

account ¬ account – s branch_name = “Perryridge” (account)

loan ¬ loan – s amount ³ 0 and amount £ 50 (loan)

r1 ¬ s branch_city = “Shanghai” (account    branch)
r2 ¬ Õ account_number, branch_name, balance ( r1 )
r3 ¬ Õ customer_name, account_number (r2 depositor)
account ¬ account – r2

depositor ¬ depositor – r3



81

Insertion

• To insert data into a relation, we either:

– specify a tuple to be inserted

– write a query whose result is a set of tuples to be inserted

• In relational algebra, an insertion is expressed by:

– 𝒓 ← 𝒓 ∪ 𝑬, where 𝒓 is a relation and 𝑬 is a relational algebra expression.

– The insertion of a single tuple is expressed by letting 𝑬 be a constant 

relation containing one tuple
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Insertion Examples
• Insert information in the database specifying that Smith has 

$1200 in account A_973 at the Perryridge branch.

• Provide as a gift for all loan customers in the Perryridge branch, a 
$200 savings account. Let the loan number serve as the account 
number for the new savings account.

account ¬ account È {(A_973, “Perryridge”, 1200)}
depositor ¬ depositor È {(“Smith”, A_973)}

r1 ¬ (sbranch_name = “Perryridge” (borrower   loan))
account ¬ account È Õloan_number, branch_name, 200 (r1)
depositor ¬ depositor È Õcustomer_name, loan_number(r1)
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Updating
• A mechanism to change a value in a tuple without changing all 

other values in the tuple
• Use the generalized projection operator to do this task

– 𝒓 ← 𝜫𝑭𝟏,𝑭𝟐,…,𝑭𝒊(𝒓)
– Each 𝑭𝒊 is either 

• the 𝒊th attribute of 𝒓, if the 𝑖th attribute is not updated, or
• if the attribute to be updated, 𝑭𝒊 is an expression, involving only 

constants and the attributes of 𝒓, which gives the new value for 
the attribute
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Update Examples
• Make interest payments by increasing all balances by 5 percent.

where AN, BN and BAL stand for account_number, branch_name and balance, 
respectively

• Pay all accounts with balances over $10,000 6 percent interest and 
pay all others 5 percent 

account ¬ Õ AN, BN, BAL * 1.05 (account)

account ¬ Õ AN, BN, BAL * 1.06 (s BAL > 10000 (account))
È ÕAN, BN, BAL * 1.05 (sBAL £ 10000 (account))
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Updating

• To select some tuples from 𝒓 to update, we can use the following 

expression:

𝒓 ← 𝜫𝑭𝟏,𝑭𝟐,…,𝑭𝒏(𝝈𝑷 𝒓 ) ∪ (𝒓 − 𝝈𝑷(𝒓))

where 𝑷 denotes the selection condition that chooses which tuples to 

update
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Views（视图）
• In some cases, it is not desirable for all users to see the entire 

logical model
• Consider a person who needs to know a customer’s loan number but 

has no need to see the loan amount. This person should see a 
relation described, in the relational algebra, by 

𝜫𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓_𝒏𝒂𝒎𝒆,𝒍𝒐𝒂𝒏_𝒏𝒖𝒎𝒃𝒆𝒓,𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆(𝒃𝒐𝒓𝒓𝒐𝒘𝒆𝒓 ⋈ 𝒍𝒐𝒂𝒏)

• Any relation that is not of the conceptual model but is made visible 
to a user as a “virtual relation” is called a view
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View Definition
• A view is defined using the create view statement which has the form

create view v as < query expression >
• Once a view is defined, the view name can be used to refer to the 

virtual relation that the view generates
• View definition is not the same as creating a new relation by evaluating 

the query expression  
– Rather, a view definition causes the saving of an expression

– the expression is substituted into queries using the view
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View Examples
• Consider the view (named all_customer) consisting of branches and 

their customers

• We can find all customers of the Perryridge branch by writing:

create view all_customer as
Õbranch_name, customer_name (depositor    account)

È Õbranch_name, customer_name (borrower loan)

Õcustomer_name (sbranch_name = “Perryridge” (all_customer))
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Updates Through View
• Must be translated to modifications of the actual relations
• Consider the person who needs to see all loan data in the loan relation 

except amount. The view given to the person, branch_loan, is defined as: 
create view branch_loan as 𝜫𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆,𝒍𝒐𝒂𝒏_𝒏𝒖𝒎𝒃𝒆𝒓(𝒍𝒐𝒂𝒏)

• Since we allow a view name to appear wherever a relation name is allowed, 
the person may write:

𝒃𝒓𝒂𝒏𝒄𝒉_𝒍𝒐𝒂𝒏 ← 𝒃𝒓𝒂𝒏𝒄𝒉_𝒍𝒐𝒂𝒏 ∪ {("Perryridge", 𝑳_𝟑𝟕)}
• An insertion into relation loan requires a value for amount. The insertion 

can be handled by either.
– rejecting the insertion
– inserting a tuple (L_37, “Perryridge”, null)
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Updates Through Views (Cont.)
• Some updates through views are impossible to translate into database 

relation updates
𝒄𝒓𝒆𝒂𝒕𝒆 𝒗𝒊𝒆𝒘 𝒗 𝒂𝒔 (𝝈𝒃𝒓𝒂𝒏𝒄𝒉_𝒏𝒂𝒎𝒆;"𝑷𝒆𝒓𝒓𝒚𝒓𝒊𝒅𝒈𝒆"(𝒂𝒄𝒄𝒐𝒖𝒏𝒕)

𝒗 ← 𝒗 ∪ (𝑳_𝟗𝟗, "Downtown", 𝟐𝟑)
• Others cannot be translated uniquely

𝒂𝒍𝒍_𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 ← 𝒂𝒍𝒍_𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 ∪ {(Perryridge, "𝑱𝒐𝒉𝒏")}
– Have to choose loan or account, and create a new loan/account number

create view all_customer as
Õbranch_name, customer_name (depositor    account)

È Õbranch_name, customer_name (borrower loan)
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Views Defined Using Other Views
• One view may be used to define another view 

• A view relation 𝒗𝟏is said to depend directly (直接依赖) on a view 

relation 𝒗𝟐 if 𝒗𝟐 is used in the expression defining 𝒗𝟏

• A view relation 𝒗𝟏 is said to depend（依赖）on view relation 𝒗𝟐 if 

either 𝒗𝟏 depends directly to 𝒗𝟐 or there is a path of 

dependencies from 𝒗𝟏 to 𝒗𝟐

• A view relation 𝒗 is said to be recursive (递归) if it depends on 

itself



92

View Expansion
• A way to define the meaning of views defined in terms of other views
• Let view 𝒗𝟏 be defined by an expression 𝒆𝟏 that may itself contain 

uses of view relations
• View expansion of an expression repeats the following replacement 

step:
repeat

Find any view relation 𝒗𝒊 in 𝒆𝟏
Replace the view relation 𝒗𝒊 by the expression defining 𝒗𝒊

until no more view relations are present in 𝒆𝟏
• As long as the view definitions are not recursive, this loop will 

terminate



93

Summary
• Relation/table

– Attributes, domain, null value
– Keys: superkeys, candidate keys, primary keys, foreign keys
– Relational schema, relation instance, tuple

• Relational Database
– A set of relations connected by foreign-key constratints
– Database schema/database schema diagram

• Relational algebra
– Basic operations

• select s, project P, Cartesian product ´, set union È, set difference -, rename r
– Additional operations

• set intersection Ç, natural join ⋈, conditional join, outer join, division ÷, assignment  ¬
– Generalized projection and aggregate functions
– Insertion, delete, update

• View
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Homework

• Exercises

– 2.1, 2.6, 2.7, 2.8, 2.15, 2.18

• Submission
– E-learning系统，上传单个word或者PDF文件

– Deadline: 12:00pm, March 5, 2025
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End of Lecture 2


