
1复旦大学计算机科学技术学院

Lecture 4/1: Intermediate SQL
第4/1讲：中级结构化查询语言

周水庚 / Shuigeng Zhou

邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Outline of the Course
• Part 0: Overview

– Lect. 1 (Feb. 29) - Ch1: Introduction

 Part 1 Relational Databases
– Lect. 2 (Mar. 7) - Ch2: Relational model

(data model, relational algebra)
– Lect. 3 (Mar. 14) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 21) – Ch4/5: Intermediate and

Advanced SQL

• Part 2 Database Design
– Lect. 5 (Mar. 28) - Ch6: Database design

based on E-R model
– Apr. 4 (Tomb-Sweeping Day): no course
– Lect. 6 (Apr. 11) - Ch7: Relational database

design

• Midterm exam: Apr. 18

• Part 3 Data Storage & Indexing
– Lect. 7 (Apr. 25) - Ch12/13: Storage

systems & structures
– Lect. 8 (May 3 -> Apr. 28) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– Lect. 9 (May 10) - Ch15: Query processing
– Lect. 10 (May 17) - Ch16: Query

optimization

• Part 5 Transaction Management
– Lect. 11 (May 24) - Ch17: Transactions

– Lect. 12 (May 31) - Ch18: Concurrency
control

– Lect. 13 (Jun. 7) - Ch19: Recovery system

• Part 6 DB Systems & Course Review
– Lect. 14 (Jun. 14)

Final exam: 13:00-15:00, Jun. 26

3

Schema Diagrams

Schema Diagram (模式图)
for the banking

enterprise

Banking database

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

4

Schema diagram for the university database

5

Outline

 Join Expressions

• Views

• Transactions

• Integrity Constraints

• Data Types in SQL

• Index Definition in SQL

• Authorization

6

The Natural Join

select 𝐴1, 𝐴2,…, 𝐴𝑛
from 𝑟1 natural join 𝑟2 natural join …natural join 𝑟𝑚
where P;

select name, title
from instructor natural join teaches, course
where teaches.course_id = course.course_id;

select name, course_id
from instructor natural join teaches;

7

Join Expressions
• Join operations

– Take two relations and return another relation as the results

• Join type
– Define how tuples in each relation that do not match any tuple in the other

relation (based on the join condition) are treated

• Join condition

– Define which tuples in the two relations match, and what attributes are
present in the result of the join

Join Types

inner join
left outer join
right outer join
full outer join

Join Conditions

natural
on <predicate>
using (A1, A2, ..., An)

8

Relations for Examples

Customer_name Loan_number

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

Branch_name

Downtown

Redwood

Perryridge

Loan_number

L-170

L-230

L-260

Relation loan Relation borrower

Note: borrower information is missing for L-260 and loan information is
missing for L-155

9

Joined Relations – Examples

Branch_name amount

Downtown

Redwood

3000

4000

Customer_name Loan_number

Jones

Smith

L-170

L-230

Loan_number

L-170

L-230

Branch_name amount

Downtown

Redwood

Perryridge

3000

4000

1700

Customer_name Loan_number

Jones

Smith

null

L-170

L-230

null

Loan_number

L-170

L-230

L-260

loan inner join borrower on
loan.loan_number = borrower.loan_number

loan left outer join borrower on
loan.loan_number = borrower.loan_number

10

Joined Relations – Examples

Branch_name amount

Downtown

Redwood

3000

4000

Customer_name

Jones

Smith

Loan_number

L-170

L-230

Branch_name amount

Downtown

Redwood

null

3000

4000

null

Customer_name

Jones

Smith

Hayes

Loan_number

L-170

L-230

L-155

loan natural inner join borrower

loan natural right outer join borrower

11

Joined Relations – Examples

Branch_name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

Customer_name

Jones

Smith

null

Hayes

Loan_number

L-170

L-230

L-260

L-155

loan full outer join borrower using (loan_number)

Find all customers who have either an account or a loan (but not both) at the bank:

select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_number is null

join-using = natural join

12

Differences
• join on/join using

– on is predication

– using is to specify attributes for natural join

• join on/where

select name, title
from (instructor natural join teaches) join course using (course_id);

select *
from student left outer join takes on student.ID=takes.ID

select *
from student left outer join takes
on true
where student.ID=takes.ID

➢Join on：结果中会出现ID也为NULL情况，如学生
没有选课，就没有课的ID；on为join的一部分，一旦
连接不成自动生成NULL

➢Where：因为join on true，断言的结论一直为真

（没有空集），实际产生的是笛卡尔集合，不会出现
NULL连接的情况，无法产生outer join的效果

13

Outline

• Join Expressions

 Views

• Transactions

• Integrity Constraints

• Data Types in SQL

• Authorization

14

View and View Updates
• Create a view of all loan data in relation loan, hiding the amount

attribute

create view branch_loan as
select branch_name, loan_number
from loan

• Add a new tuple to relation branch_loan

insert into branch_loan
values (‘Perryridge’, ‘L-307’)

This insertion should be represented by the insertion of the tuple

(‘L-307’, ‘Perryridge’, null)

into the relation loan, loan (loan_number, branch_name, amount)

15

Update of a View (Cont.)
• Updates on complex views are difficult or impossible to translate, and

hence are disallowed

• Most SQL implementations allow updates only on simple views (without
aggregates) defined on a single relation.

• In general, an SQL view is updatable if:
– The select clause contains only attribute names of the relation, and does

not have any expressions, aggregates, or distinct specification

– Any attributes not listed in the select clause can be set to null

– The from clause has only one relation

– The query does not have a group by or having clause

16

Materialized Views (物化视图)
• The relation of a view is stored

• Will change if the actual relations used in the view definition
change. The view is kept up-to-date

• The aggregated result is likely to be much smaller than the large
relations on which the view is defined; as a result, the materialized
view can be used to answer the query very quickly, avoiding reading
the large underlying relations. Of course, the benefits to queries
from the materialization of a view must be weighed against the
storage costs and the added overhead for updates.

• Materialized view maintenance
– Real-time updates vs. periodic updates
– Chapter 4 (Version 7)

17

Outline

• Join Expressions

• Views

 Transactions

• Integrity Constraints

• Data Types in SQL

• Authorization

18

Transactions

• A transaction is a sequence of queries and update statements

executed as a single unit (atomicity, 原子性)

• Transactions are started implicitly and terminated by one of

– commit [work]: makes all updates of the transaction permanent in

the database

– rollback [work]: undoes all updates performed by the transaction

– [work] means ``work’’ is optional

19

Transactions (Cont.)

• E.g., transfer of money from one account to another involves two

steps: deduct from one account and credit to another

– If one step succeeds and the other fails, database is in an inconsistent state

– Either both steps should succeed or neither should

• If any step of a transaction fails, all work done by the transaction can

be undone by rollback work

• Rollback of incomplete transactions is done automatically, in case of

system failures

20

Transactions (Cont.)

• In most database systems, each SQL statement that executes

successfully is automatically committed

– Each transaction consists of only a single statement

– Automatic commit can be turned off, allowing multi-statement

transactions, but depends on the database system

– Another option in SQL:1999: enclose statements within

begin atomic

…

end

21

Outline

• Join Expressions

• Views

• Transactions

 Integrity Constraints

• Data Types in SQL

• Index Definition in SQL

• Authorization

22

Integrity Constraints

• Integrity constraints guard against accidental damage to the database

– by ensuring that authorized changes to the database do not result in a loss

of data consistency

• Types

– Domain constraints

– Not null constraint

– Unique constraint

– Referential integrity

– …

23

Domain Constraints (域约束)
• Domain constraints are the most elementary form of integrity

constraint

• New domains can be created from existing data types, e.g.,

create domain Dollars numeric(12, 2)
create domain Pounds numeric(12, 2)

– We cannot assign or compare a value of type Dollars to a value of type Pounds

• The check clause in SQL-92 permits domains to be restricted

create domain hourly_wage numeric(5,2)
constraint value_test check(value >= 6.00)

– The domain has a constraint to ensure that the hourly_wage is greater than 6.00

– The clause constraint value_test is optional but useful to indicate which constraint
an update violates

24

Not Null Constraint

• Declare branch_name for relation branch to be not null

branch_name char(15) not null

• Declare the domain Dollars to be not null

create domain Dollars numeric(12,2) not null

25

Unique Constraint

• unique (𝑨𝟏, 𝑨𝟐, … , 𝑨𝒎)

– The unique specification states that the attributes 𝐴1, 𝐴2, … , 𝐴𝑚

form a candidate key

– Candidate keys are permitted to be null (in contrast to primary

keys)

– However, candidate key attributes are permitted to be null

unless they have explicitly been declared to be not null. Recall

that a null value does not equal any other value

26

The check Clause

• check (P), where P is a predicate

– E.g., declare branch_name as the primary key for relation
branch and ensure that the values of assets are non-negative

create table branch
(branch_name char(15),
branch_city char(30),
assets integer,
primary key (branch_name),
check (assets >= 0))

27

Referential Integrity (参照完整性)

• Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation

• Formal definition
– Let 𝒓𝟏(𝑹𝟏) and 𝒓𝟐(𝑹𝟐) be relations with primary keys 𝑲𝟏 and 𝑲𝟐 respectively

– If the subset 𝜶 of 𝑹𝟐 is a foreign key referencing 𝑲𝟏 in relation 𝒓𝟏, for
every 𝒕𝟐 in 𝒓𝟐, there must be a tuple 𝒕𝟏 in 𝒓𝟏 such that 𝒕𝟏 𝑲𝟏 = 𝒕𝟐[𝜶]

– Referential integrity constraint also called subset dependency since its can
be written as

𝜫𝜶(𝒓𝟐) ⊆ 𝜫𝑲𝟏(𝒓𝟏)

28

Integrity Constraint Violation in Transactions

create table person (
ID char(10),
name char(40),
spouse char(10),
primary key ID,
foreign key spouse references person)

• That is, the constraint says that the spouse attribute must contain a name that is
present in the person table.

• Suppose we wish to note the fact that John and Mary are married to each other by
inserting two tuples, one for John and one for Mary, in the above relation, with the
spouse attributes set to Mary and John, respectively. The insertion of the first
tuple would violate the foreign-key constraint, regardless of which of the two tuples
is inserted first. After the second tuple is inserted the foreign-key constraint
would hold again.

• How to handle such situations？

29

Integrity Constraint Violation in Transactions

• To handle such situations, the SQL standard allows a clause initially deferred
to be added to a constraint specification; the constraint would then be
checked at the end of a transaction, and not at intermediate steps.

• A constraint can alternatively be specified as deferrable, which means it is
checked immediately by default, but can be deferred when desired. For
constraints declared as deferrable, executing a statement set constraints
constraint-list deferred as part of a transaction causes the checking of the
specified constraints to be deferred to the end of that transaction

• How to insert a tuple without causing constraint violation?

– Set spouse to null initially, update after inserting all persons (not possible
if spouse attributes declared to be not null)

– OR defer constraint checking

set constraints constraint_list deferred

30

Complex Check Clauses

• Every section must assigned a time_slot

– check (time_slot_id in (select time_slot_id from time_slot))

– Can we use a foreign key here?

• Every section has at least one instructor teaching the section

– how to write this?

– check ((course_id, sec_id, semester, year) in (select course_id, sec_id,
semester, year from takes))

– Can we use a foreign key here?

• Unfortunately: subquery in check clause or create assertion (断言)
is not supported by many database systems

– Alternative: triggers (later)

31

Database Modification

• 𝒓𝟐’s attribute set 𝜶 reference 𝒓𝟏 on attributes 𝑲

• Insert

– If a tuple 𝒕𝟐 is inserted into 𝒓𝟐, the system must ensure that there is a
tuple 𝒕𝟏 in 𝒓𝟏 such that 𝒕𝟏 𝑲 = 𝒕𝟐[𝜶]. That is 𝒕𝟐[𝜶] ∈ 𝜫𝑲(𝒓𝟏)

• Delete

– If a tuple 𝒕𝟏 is deleted from 𝒓𝟏, the database system must compute
the set of tuples in 𝒓𝟐 that reference 𝒕𝟏: 𝝈𝜶=𝒕𝟏 𝑲 (𝒓𝟐)

– If this set is not empty

• either the delete command is rejected as an error, or

• the tuples that reference 𝒕𝟏 must be deleted (cascading deletions
are possible)

• Alternatively, set the values of attributes 𝜶 to null in r2

32

Database Modification (Cont.)

• Update

– If a tuple 𝒕𝟐 is updated in relation 𝒓𝟐 and the update modifies values
for foreign key 𝜶, then a test similar to the insert case is made

– If a tuple 𝒕𝟏 is updated in 𝒓𝟏, and the update modifies values for the
primary key(K), then a test similar to the delete case is made:

• The system must compute 𝝈𝜶=𝒕𝟏 𝑲 (𝒓𝟐) using the old value of 𝒕𝟏
• If this set is not empty

– the update may be rejected as an error, or

– the update may be cascaded to the tuples in the set, or

– the tuples in the set may be deleted.

33

Database Modification

• 𝒓𝟐=𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓, 𝜶=customer-name

• 𝒓𝟏=customer, 𝑲=𝒄𝒖𝒔𝒕𝒐𝒎−𝒏𝒂𝒎𝒆

34

Referential Integrity in SQL

• Primary, candidate, foreign keys can be specified as part of the
SQL create table statement:
– The primary key clause

– The unique key clause

– The foreign key clause

• By default, a foreign key references the primary key attributes of
the referenced table
foreign key (account_number) references account

• Short form for specifying a single column as foreign key
account_number char (10) references account

35

Referential Integrity in SQL – Example

create table customer
(customer_name char(20),
customer_street char(30),
customer_city char(30),
primary key (customer_name))；

create table branch
(branch_name char(15),
branch_city char(30),
assets integer,
primary key (branch_name))；

create table account
(account_number char(10),
branch_name char(15),
balance integer,
primary key (account_number),
foreign key (branch_name) references branch)；

create table depositor
(customer_name char(20),
account_numberchar(10),
primary key (customer_name, account_number),
foreign key (account_number) references account,
foreign key (customer_name) references customer)；

36

Cascading Actions in Referential Integrity

create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department

)；

create table course (
…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade
on update cascade,

…
)；

• Due to the on delete cascade
clauses, if a delete of a tuple in
department results in
referential-integrity constraint
violation, the delete “cascades”
to the course relation, the tuples
that refer to the department
that should be deleted

• Cascading updates are similar

37

Cascading Actions in SQL (Cont.)

• If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each dependency, a
deletion or update at one end of the chain can propagate across the
entire chain

• Referential integrity is only checked at the end of a transaction
– Intermediate steps are allowed to violate referential integrity provided

later steps remove the violation

– Otherwise it would be impossible to create some database states, e.g.
insert two tuples whose foreign keys point to each other

• E.g. spouse attribute of relation married_person(name, address, spouse)

…

38

Referential Integrity in SQL (Cont.)

• Alternative to cascading
– on delete set null

– on delete set default

• Null values in foreign key attributes complicate SQL referential
integrity semantics
– if any attribute of a foreign key is null, the tuple is defined to satisfy

the foreign key constraint

39

Assertions (断言)

• An assertion is a predicate expressing a condition that we wish the

database always to satisfy

• An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

• When an assertion is made, the system tests it for validity, and

tests it again on every update that may violate the assertion

– This testing may introduce a significant amount of overhead; hence

assertions should be used with great care

40

Example

• The sum of all loan amounts for each branch must be less than the sum
of all account balances at the branch

create assertion sum_constraint check
(not exists

(select *

from branch
where (select sum(amount)

from loan
where loan.branch_name = branch.branch_name)
>= (select sum(balance)

from account
where loan.branch_name = branch.branch_name)))

41

Example
• Every loan has at least one borrower who maintains an account with a

minimum balance at least $1000
create assertion balance_constraint check
(not exists (

select *
from loan
where not exists (

select *
from borrower, depositor, account
where loan.loan_number = borrower.loan_number

and borrower.customer_name = depositor.customer_name
and depositor.account_number = account.account_number
and account.balance >= 1000)))

Note: SQL has no (for all) predicate, so ∀𝒙 𝑷 ≡ ¬(∃𝒙(¬𝑷))

42

Outline

• Join Expressions

• Views

• Transactions

• Integrity Constraints

 Data Types in SQL

• Index Definition in SQL

• Authorization

43

Built-in Data Types in SQL

• date: dates, containing a (4 digit) year, month and day
– E.g., date ‘2005-07-27’

• time: time of day, in hours, minutes and seconds
– E.g., time ‘09:00:30’ time ‘09:00:30.75’

• timestamp: date plus time of day
– E.g., timestamp ‘2005-07-27 09:00:30.75’

– timestamp (p) specifies the number of digits after the decimal point

• interval: period of time
– E.g., interval ‘1’ day

– Subtracting a date/time/timestamp value from another gives an interval value

– Interval values can be added to date/time/timestamp values

44

Built-in Data Types in SQL (Cont.)

• Can extract values of individual fields from date/time/timestamp,
e.g.,
– extract (year from current_date)

• Can cast string types to date/time/timestamp, e.g.,
– cast <string-valued-expression> as date

– cast <string-valued-expression> as time

45

Default Values

• A default value to be specified for an attribute

• How an insertion can omit the value for the tot_cred attribute?

46

Large-Object Types

• Large objects (photos, videos, CAD files, etc.) are stored as a large

object

– blob: binary large object - object is a large collection of uninterpreted binary

data. The interpretation is left to an application outside of the database system

– clob: character large object - object is a large collection of character data

– E.g. book_review clob(10KB)

image blob (10MB)

movie blob(2GB)

– When a query returns a large object, a locator (pointer) is returned rather

than the large object itself

47

User-Defined Types

• Create type construct in SQL creates user-defined type
– create type Dollars as numeric (12,2) [final]

• Create domain construct in SQL-92 creates user-defined domain
types
– create domain person_name char(20) not null

• Types and domains are similar. Domains can have constraints, such
as not null/default values, specified on them
create domain degree_level varchar(10)
constraint degree_level_test check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

48

Outline

• Join Expressions

• Views

• Transactions

• Integrity Constraints

• Data Types in SQL

Index Definition in SQL

• Authorization

49

Index Creation
• Many queries reference only a small proportion of the records in a

table.

• It is inefficient for the system to read every record to find a record
with particular value

• An index on an attribute of a relation is a data structure that allows
the database system to find those tuples in the relation that have a
specified value for that attribute efficiently, without scanning
through all the tuples of the relation.

• We create an index with the create index command

create index <name> on <relation-name> (attribute);

50

Index Creation

• Indices are data structures used to speed up access to records with specified
values for index attributes

select *
from student
where ID = ‘12345’

– Can be executed by using the index to find the required record, without looking at all records
of relation student

– More details on index in Chapter 14 (Version 7)(Binary tree, B+ tree, B tree, Hash…)

create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID));
create index studentID_index on student(ID);

51

Outline

• Join Expressions

• Views

• Transactions

• Integrity Constraints

• Data Types in SQL

• Index Definition in SQL

 Authorization

52

Security

• Security - protection from malicious attempts to steal or modify data
– Database system level

• Authentication and Authorization mechanisms to allow specific users access
only to required data

– Operating system level
• Operating system super-users can do anything they want to the database

– Network level: must use encryption to prevent
• Eavesdropping (窃听，unauthorized reading of messages)

• Masquerading (伪装、冒充，pretending to be an authorized user or sending
messages supposedly from authorized users)

53

Security (Cont.)

• Security protection from malicious attempts to steal or modify data
– Physical level

• Physical access to computers allows destruction of data by intruders, and
traditional lock-and-key security is needed

• Computers must also be protected from floods, fire, etc. (cf. Chapter 19
Recovery)

– Human level
• Users must be screened to ensure that an authorized users do not give access to

intruders

• Users should be trained on password selection and secrecy

54

Authorization

• Forms of authorization on parts of the database

– Read authorization - allows reading, but not modification of data.

– Insert authorization - allows insertion of new data, but not

modification of existing data.

– Update authorization - allows modification, but not deletion of data.

– Delete authorization - allows deletion of data

55

Authorization (Cont.)

• Forms of authorization to modify the database schema

– Index authorization - allows creation and deletion of indices

– Resources authorization - allows creation of new relations

– Alteration authorization - allows addition or deletion of attributes in a

relation

– Drop authorization - allows deletion of relations

56

Authorization on Views

• Users can have the authorization on views without any authorization

on the relations used in the view definition

– Ability of views to hide data serves both to simplify usage of the system

and to enhance security by allowing users access only to data they need

for their job

• A combination of relational-level security and view-level security

can be used to limit a users’ precisely access to the data that they

need

57

View Example

• Suppose a bank clerk Deny needs to know the names of the customers

of each branch, but is not authorized to see specific loan information

– Deny does not have permit of direct access to the loan relation, but grant access to

the view cust_loan, which consists only of the names of customers and the

branches at which they have a loan

– The cust_loan view is defined in SQL as follows:

create view cust_loan as

select branch_name, customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number

58

View Example (Cont.)

• The clerk is authorized to see the result of the query:

select * from cust_loan

• When the query processor translates the result into a query on the
actual relations in the database, we obtain a query on borrower and
loan

• Authorization must be checked on the clerk’s query before query
processing replaces a view by the definition of the view

59

Authorization on Views

• Creation of a view does not require resources authorization since

no real relation is being created

• The creator of a view gets only those privileges that provide no

additional authorization beyond that he already had

– E.g., if creator of view cust_loan had only read authorization on

borrower and loan, he gets only read authorization on cust_loan

60

Transfer/Granting of Privileges
• The passage of authorization from one user to another may be

represented by an authorization graph

• The nodes of this graph are the users

• The root of the graph is the database administrator

• An edge 𝑼𝒊 → 𝑼𝒋 indicates that user 𝑼𝒊 has granted update
authorization on loan to 𝑼𝒋

• E.g., consider graph for update authorization on loan

U1 U4

U2
U5

U3

DBA

61

Authorization Grant Graph
• Requirement: All edges in an authorization graph must be part of

some path originating with the root

• If DBA revokes grant from 𝑼𝟏:
– Grant must be revoked from 𝑼𝟒 since 𝑼𝟏 no longer has authorization

– Grant must not be revoked from 𝑼𝟓 since 𝑼𝟓 has another authorization path
from DBA through 𝑼𝟐

• Must prevent cycles of grants with no path from the root:
– DBA grants authorization to 𝑼𝟕

– 𝑼𝟕 grants authorization to 𝑼𝟖

– 𝑼𝟖 grants authorization to 𝑼𝟕

– DBA revokes authorization from 𝑼𝟕

– Must revoke grant 𝑼𝟕 to 𝑼𝟖 and from 𝑼𝟖 to 𝑼𝟕 since there is no path from DBA
to 𝑼𝟕 or to 𝑼𝟖 anymore

62

Security Specification in SQL
• The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name>

to <user list>

• <user list> is:
– a user-id

– public, which allows all valid users the privilege granted

– A role (more on this later)

• Granting a privilege on a view does not imply granting any privileges
on the underlying relations

• The grantor of the privilege must already hold the privilege on the
specified item

63

Privileges in SQL
• select: allows read access to relation, or the ability to query using

the view

– E.g., grant select on branch to U1, U2, U3

• insert: the ability to insert tuples

• update: the ability to update using the SQL update statement

• delete: the ability to delete tuples

• references: ability to declare foreign keys when creating relations

• usage: In SQL-92, authorizes a user to use a specified domain

• all privileges: used as a short form for all the allowable privileges

64

Privilege to Grant Privileges

• with grant option
– Allow a user who is granted a privilege to pass the privilege on

to other users

– E.g., give U1 the select privilege on branch and allows U1 to grant
this privilege to others

grant select on branch to U1 with grant option

65

Roles (角色)
• Roles permit common privileges for a class of users can be specified

just once by creating a corresponding “role”

• Privileges can be granted to or revoked from roles, just like user

• Roles can be assigned to users, and even to other roles
create role teller
create role manager

grant select on branch to teller
grant update (balance) on account to teller
grant all privileges on account to manager

grant teller to manager
grant teller to alice, bob
grant manager to avi

66

Revoking Authorization in SQL
• The revoke statement is used to revoke authorization.

Revoke <privilege list>

on <relation name or view name> from <user list> [restrict|cascade]

• Example:
revoke select on branch from 𝑈1, 𝑈2, 𝑈3 cascade

• Revocation of a privilege from a user may cause other users also to
lose that privilege; referred to as cascading of the revoke

• We can prevent cascading by specifying restrict:

revoke select on branch from 𝑈1, 𝑈2, 𝑈3 restrict
– with restrict, the revoke command fails if cascading revokes are required

67

Revoking Authorization in SQL (Cont.)

• <privilege-list> may be all to revoke all privileges the revoke may hold

• If <revoke-list> includes public, all users lose the privilege except

those granted it explicitly

• If the same privilege was granted twice to the same user by

different grantees, the user may retain the privilege after the

revocation

• All privileges that depend on the privilege being revoked are also

revoked

68

Limitations of SQL Authorization
• SQL does not support authorization at a tuple level

– E.g., we cannot restrict students to see only their own grades
• With the growth in Web access to databases, database accesses

come primarily from application servers
– End users don't have database user ids, they are all mapped to the

same database user id
• The task of authorization in such cases falls on the application

program, with no support from SQL
– Benefit: fine-grained authorizations, such as to individual tuples, can

be implemented by the application.
– Drawbacks

• Authorization must be done in application code, and may be dispersed all
over the application

• Checking for the authorization loopholes (漏洞) becomes very difficult since
it requires reading large amounts of application code

69

Audit Trails (审计追踪)

• An audit trail is a log of all changes (inserts / deletes / updates) to
the database along with information such as

– which user performed the change

– when the change was performed

• Used to track erroneous/fraudulent(欺骗性的) updates

• Can be implemented using triggers, but many database systems
provide direct support

70

Encryption

• Data may be encrypted when database authorization provisions do not

offer sufficient protection

• Properties of good encryption technique:

– Relatively simple for authorized users to encrypt and decrypt data

– Encryption scheme depends not on the secrecy of the algorithm but on

the secrecy of a parameter of the algorithm called the encryption key (

密钥)

– Extremely difficult for an intruder to determine the encryption key

71

Encryption (Cont.)

• Data Encryption Standard (DES)
– Substitutes characters and rearranges their order on the basis of an

encryption key which is provided to authorized users via a secure
mechanism

– Scheme is no more secure than the key transmission mechanism since
the key has to be shared

• Advanced Encryption Standard (AES)
– a new standard replacing DES, and is based on the Rijndael algorithm,

but is also dependent on shared secret keys

72

Encryption (Cont.)

• Public-key encryption
– each user has two keys:

• public key – used to encrypt data, but cannot be used to decrypt data

• private key -- used to decrypt data

– Encryption scheme is impossible or extremely hard to decrypt data
given only the public key

– The RSA public-key encryption scheme is based on the hardness of
factoring a very large number (100's of digits) into its prime
components.

73

Authentication

• Password-based authentication is widely used, but is susceptible
to sniffing on a network

• Challenge-response systems avoid transmission of passwords
– DB sends a (randomly generated) challenge string to user

– User encrypts string and returns result

– DB verifies identity by decrypting result

– Can use public-key encryption system by DB sending a message
encrypted using user’s public key, and user decrypting and sending the
message back

74

Authentication (cont.)

• Digital signatures are used to verify authenticity of data

– E.g. use private key (in reverse) to encrypt data, and anyone can verify

authenticity by using public key (in reverse) to decrypt data. Only

holder of private key could have created the encrypted data.

– Digital signatures also help ensure nonrepudiation (不可否认): sender

cannot later claim to have not created the data

75

Review Terms

• Join types
– Inner and outer join

– Left, right and full outer join

– Natural, using, and on

• View definition

• Materialized views

• View update

• Transactions
– Commit work

– Rollback work

– Atomic transaction

• Integrity constraints

• Domain constraints

• Unique constraint

• Privileges
– select

– insert

– update

– All privileges

– Granting of privileges

– Revoking of privileges

– Privilege to grant
privileges

– Grant option

• Roles

• Authorization on views

• Execute authorization

• Invoker privileges

• Row-level authorization

• Check clause

• Referential integrity
– Cascading deletes

– Cascading updates

• Assertions

• Date and time types

• Default values

• Indices

• Large objects

• User-defined types

• Domains

• Schemas

• Authorization

76

Homework

• Further Reading
– Chapter 4

• Exercises
– 4.7, 4.16, 4.18

• Submission
– Deadline: 12:00pm, March 27, 2024

77

End of Lecture 4/1

