
1复旦大学计算机科学技术学院

Lecture 12: Transaction Processing
第12讲：事务处理

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate &

Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 8 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no class
– Lect. 10 (May 8) - Ch15: Query processing
– Lect. 11 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions
– Lect. 13 (May 29) - Ch18: Concurrency

control
– Lect. 14 (Jun. 5) - Ch19: Recovery system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

Database
System

Structure

Database

DBMS

Applications/tools

Users

4

Outline

 Transaction Concept

 Schedules

 Serializable Schedule

 Recoverable Schedule

 Testing for Serializability

5

Transaction Concept
• A transaction (事务) is a unit of program execution consisting of

multiple operations

– During transaction execution, the database may be inconsistent

– After the transaction is committed, the database must be consistent

• Two main issues

– Concurrent execution of multiple transactions: concurrency control

– Hardware failures and system crashes: system recovery

6

ACID Properties
• Atomicity（原子性）

– Either all operations of the transaction are properly reflected in the
database or none are

• Consistency（一致性）
– Execution of a transaction in isolation preserves the consistency of the

database
• Isolation（隔离性）

– Although multiple transactions may execute concurrently, each
transaction must be unaware of other transactions

• Durability（持久性）
– After a transaction completes successfully, the changes it has made to

the database persist, even if there are system failures

7

Example of Fund Transfer
• A transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

• Consistency requirement
– The sum of A and B is unchanged by the execution of the transaction

• Atomicity requirement
– If the transaction fails after step 3 and before step 6, the system should

ensure that its updates are not reflected in the database. Otherwise, an
inconsistency will occur

8

Example of Fund Transfer (Cont.)
• Durability requirement

– Once the user was notified that the transaction has completed, the
updates to the database by the transaction must persist despite
failures

• Isolation requirement
– If between steps 3 and 6, another transaction is allowed to access the

partially updated database, it will see an inconsistent database
– Can be ensured trivially by running transactions serially, i.e., one after

the other. However, executing multiple transactions concurrently has
significant benefits

9

Transaction State
• Active(活跃)

– The initial state. The transaction stays in this state while it is executing
• Partially committed(部分提交)

– After the final statement has been executed
• Failed(失败)

– After discovering that normal execution can no longer proceed
• Aborted(夭折)

– After the transaction has been rolled back （回滚）and the database
restored to its state prior to the start of the transaction

– Restart the transaction – only if no internal logical error happens in the
transaction

– Kill the transaction – problems arising with the transaction, input data, no
desirable data found in the database

• Committed(提交)
– After successful completion

• Terminated(结束)
– A transaction is said to have terminated if it has either committed or

aborted

10

Outline

 Transaction Concept

 Schedules

 Serializable Schedule

 Recoverable Schedule

 Testing for Serializability

11

Concurrent Executions
• Concurrent execution

– Multiple transactions are allowed to run concurrently in the system
– Advantages

• Increase processor and disk utilization
• Reduce average response time

• Concurrency control
– Mechanisms to achieve isolation, i.e., to control the interaction among

the concurrent transactions in order to prevent them from destroying
the consistency of the database

12

Schedules
• Schedule（调度）

– sequences that indicate the chronological order
in which instructions of concurrent transactions
are executed

– a schedule for a set of transactions must consist
of all instructions of those transactions

– must preserve the order in which the
instructions appear in each individual transaction.

• Example
– Let �� transfer $50 from A to B, and ��

transfer 10% of the balance from A to B
– Schedule 1 is a serial schedule (串行调度), in

which �� is followed by ��
Schedule 1

13

Example Schedule (Cont.)
• Another serial schedule where �� is followed by ��

Schedule 1 Schedule 2

14

Example Schedule (Cont.)
• Non-serial schedule

– Let �� and �� be the transactions

defined previously

– Schedule 3 is not a serial schedule,

but it is equivalent to Schedule 1

• A’=(A-50)-(A-50)*0.1=(A-50)*0.9

• B’=B+50+(A-50)*0.1

• A’+B’=A+B

Schedule 3

15

Example Schedule (Cont.)

• The following concurrent schedule

does not preserve the value of the

sum A + B.
– A’=A-50

– B’=B+A*0.1

– A’+B’ = A+B-50+A*0.1 ≠ A+B

Schedule 4

16

Outline

 Transaction Concept

 Schedules

 Serializable Schedule

 Recoverable Schedule

 Testing for Serializability

17

Serializability（可串行化）
• Assumption

– Each transaction preserves database consistency, thus serial execution
of a set of transactions preserves database consistency

• Serializability
– A schedule is serializable if it is equivalent to a serial schedule

• Conflict serializability（冲突可串行性）

• View serializability（视图可串行性）

• Note
– We ignore operations other than read and write instructions. Our

simplified schedules consist of only read and write instructions

18

Conflict Serializability
• Conflict

– Given instructions �� and �� of transactions �� and �� respectively, conflict occurs
iff there exists some item Q accessed by both �� and ��, and at least one of these
instructions write Q

– Four cases
• �� = read(Q), �� = read(Q). �� and �� (no conflict)

• �� = read(Q), �� = write(Q). (conflict)

• �� = write(Q), �� = read(Q). (conflict)

• �� = write(Q), �� = write(Q). (conflict)

• Intuitively, a conflict between �� and �� forces a (logical) temporal order between them

• If �� and �� are consecutive in a schedule and they do not conflict, their results would
remain the same even if they had been interchanged in the schedule

19

Conflict Serializability (Cont.)
• Conflict equivalent

– If a schedule � can be transformed into a schedule �′ by a series of
swaps of non-conflicting instructions, we say that � and �′ are conflict
equivalent

– We say that a schedule � is conflict serializable if it is conflict
equivalent to a serial schedule

• Example of a schedule that is not conflict serializable
– We are unable to swap instructions in the following schedule to obtain

either the serial schedule <��, ��>, or the serial schedule < ��, ��>.

�3 �4
read(Q)

 write(Q)
write(Q)

20

Conflict Serializability (Cont.)

• Schedule 1 can be transformed

into Schedule 2, a serial schedule

where �� follows ��, by a series

of swaps of non-conflicting

instructions

• Therefore, Schedule 1 is conflict

serializable

Schedule 1 Schedule 2

Read(B)
Write(B)

Read(A)
Write(A)

21

Conflict Serializability (Cont.)

 Example

 Sc1=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 Swap w2(A) and r1(B)w1(B), then we have

 r1(A)w1(A)r2(A)r1(B)w1(B)w2(A)r2(B)w2(B)

 Swap r2(A) and r1(B)w1(B), then：

 Sc2＝r1(A)w1(A)r1(B)w1(B) r2(A)w2(A)r2(B)w2(B)

 Sc2 is equivalent to a serializable schedule T1,T2

 Then Sc1 is conflict serializable

22

Conflict Serializability (Cont.)
 A conflict serializable schedule is a serializable schedule, but a serializable

schedule is not always conflict serializable.

 E.g., three transactions

 T1=W1(Y)W1(X)，T2=W2(Y)W2(X)，T3=W3(X)

 L1=W1(Y)W1(X)W2(Y)W2(X)W3(X) is serializable

 L2=W1(Y)W2(Y)W2(X)W1(X)W3(X) is not equivalent to L1, and not conflict
serializable.

 L2 is serializable, the result of the schedule is equivalent to L1(final write X is
from T3, final write Y is from T2)

23

View Serializability
• � and �′ are view equivalent if the following three conditions are met:

– For each data item Q, if transaction �� reads the initial value of Q in schedule S,
then transaction �� must, in schedule �′, also read the initial value of Q.

– For each data item Q, if transaction �� executes read(Q) in schedule S, and that
value was produced by transaction �� (if any), then transaction �� must in schedule

�′ also read the value of Q that was produced by transaction ��.

– For each data item Q, the transaction (if any) that performs the final write(Q)
operation in schedule S must perform the final write(Q) operation in schedule �′

• As can be seen, view equivalence is also based purely on reads and
writes alone.

24

View Serializability (Cont.)
• If a schedule S is view serializable, it is view equivalent to a serial

schedule.
• Every conflict serializable schedule is also view serializable.
• A schedule which is view-serializable but not conflict serializable.

Equivalent to T3, T4, T6

• Every view serializable schedule that is not conflict serializable
has blind writes - write without read

Write(Q)
Write(Q)

25

Other Notions of Serializability
• The following schedule produces the same outcome as the serial

schedule <��,��>, yet it is not conflict equivalent or view equivalent

• Determining such equivalence requires analysis of operations other
than read and write.

26

Outline
• Transaction Concept
• Schedules
• Serializable Schedule
 Recoverable Schedule
• Testing for Serializability

27

Recoverability (可恢复性)
• Recoverable schedule（可恢复调度）

– If a transaction �� reads a data items previously written by a transaction
��, the commit operation of �� appears before the commit operation of ��

– The following schedule is not recoverable if T9 commits immediately after
the read，because T9 reads A written by T8, which should commit before
T9

28

Recoverability (Cont.)
• Cascading rollback(级联回滚)

– A single transaction failure leads to a series of transaction rollbacks
– Consider the following schedule where none of the transactions has yet committed

– If T10 fails, T11 and T12 must also be rolled back
• Can lead to the undoing of a significant amount of work

29

Recoverability (Cont.)

• Cascadeless schedules (无级联回滚调度)

– For each pair of transactions �� and �� such that �� reads a data item

previously written by ��, the commit operation of �� appears before the

read operation of ��

– Cascading rollbacks cannot occur and every cascadeless schedule is also

recoverable

– It is desirable to restrict the schedules to those that are cascadeless

30

Transaction Definition in SQL
• DML must include a construct for specifying the set of actions that

comprise a transaction
• In SQL, a transaction begins implicitly
• A transaction in SQL ends by:

– Commit work: commits current transaction and begins a new one.
– Rollback work: causes current transaction to abort

• Levels of isolation specified by SQL-92
– Serializable – default：保证可串行化调度
– Repeatable read：只允许读取已提交数据，两次读取之间数据不能更新
– Read committed：只允许读取已提交数据，不要求可重复读
– Read uncommitted：允许读取未提交数据

31

Outline
• Transaction Concept
• Schedules
• Serializable Schedule
• Recoverable Schedule
 Testing for Serializability

32

Testing for Serializability
• Given a set of transactions T1, T2, ..., Tn

• Precedence graph（优先图）
– A direct graph where the vertices are the transactions
– We draw an arc from �� to �� if the two transactions conflict, and ��

accessed the data item on which the conflict arose earlier
– We label the arc by the data item that was accessed

• Example
x

y

T1 write(x) before T2 read(x)
T1 write(x) before T2 write(x)
T1 read(x) before T2 write(x)

T2 write(y) before T1 read(y)
T2 write(y) before T1 write(y)
T2 read(y) before T1 write(y)

33

Example Schedule A
T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

T3 T4

T1 T2

Y

Y
Z

Z

Y,Z

�� → �� → �� → �� → ��
�� → �� → �� → �� → ��
……???

34

Test for Conflict Serializability

• A schedule is conflict serializable if and only

if its precedence graph is acyclic（无环）

• If precedence graph is acyclic, the

serializability order can be obtained by a

topological sorting of the graph.

– For example, a serializability order for Schedule

A in last slide would be �� → �� → �� → �� → ��

• Any others?

35

Test for View Serializability
• The precedence graph test for conflict serializability

must be modified to apply to a test for view
serializability

• The problem of checking if a schedule is view
serializable falls in the class of NP-complete problems.
– Thus existence of an efficient algorithm is unlikely
– However practical algorithms that just check some sufficient

conditions for view serializability can still be used

36

Concurrency Control vs. Serializability Tests

• Testing a schedule for serializability after it has executed is too late

• Goal – to develop concurrency control protocols that will assure
serializability.
– They will generally not examine the precedence graph as it is being created
– Instead a protocol will impose a discipline that avoids non-seralizable

schedules

• Tests for serializability help understand why a concurrency control
protocol is correct

37

Assignments

• Practice Exercises: 17.6
• Exercises: 17.15

• Submission DDL: 12:59pm, May 28, 2025

38

End of Lecture 12

