Introduction to Databases

CBHRPES S

Lecture 12: Transaction Processing

gglzﬁ . S %& —+
JE7KBE / Shuigeng Zhou

HRfF: sgzhou@fudan.edu.cn PIdE: admis.fudan.edu.cn/sgzhou

HBRFEVTEYBERAREDE

Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 8 (A;&pr 17) - Ch12/13 Storage
. tems & structures
Part 1 Relational Databases 5YS . .
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 9 (Apr. 24) - Ch14: Indexing
(data model, relational algebra) - Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
- Lect. 4 (Mar. 13) - Ch4 & 5: Intermediate & - Lect. 10 (May 8) - Ch15: Query processing
Advanced SQL - Lect. 11 (May 15) - Ch16: Query
Part 2 Database Design opTimization
Lect. 5 (Mar. 20) - Ché: Database design - Part 5 Transaction Management
based on E-R model - Lect. 12 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database _ } :
design (Part) légﬁrgf (May 29) - Ch18: Concurrency
- t. 7 (Apr. 3) - Ch7: Relational datab
hiﬁagn é)amﬂ II)) 7: Relational database - Lect. 14 (Jun. B) - Ch19: Recovery system

Midterm exam: Apr. 10 - Lect. 15 (Jun. 5) - Course review

Final exam: 13:00-15:00, Jun. 18

(terllférvse :;:;is application sopl:::rcsated database
web users) programmers (anlysis) administrators Users
use ‘write use use

licati licatis dministrati H H
ChieasD CimD D g Applications/tools

A A e
i - !
D b i //‘ com]l_:ulier e |—> DML queries I |DDL interpreter i
i |
atabase | &G i :
! program DML compiler |
SY s * e m ! object code and organizer !
I I

i query evaluation J i DBMS
Structure | e query processor |
: I
E buffer manager | | file manager I authorization transaction E
i and integrity manager !
! manager !
i
i I
i i
i I
1 I
i / storage manager E
L N T e - 1

——
—
disk storage Database
indices | I data dictionary |

data statistical data

@ Transaction Concept
® Schedules

® Serializable Schedule
® Recoverable Schedule

® Testing for Serializability

Transaction Concept

* A transaction (5855) is a unit of program execution consisting of
multiple operations
- During transaction execution, the database may be inconsistent

- After the transaction is committed, the database must be consistent

Two main issues
- Concurrent execution of multiple transactions: concurrency control

- Hardware failures and system crashes: system recovery

ACID Properties

Atomicity (JFRF1E)

- Either all operations of the transaction are properly reflected in the
database or none are

Consistency (—3it)

- Execution of a tfransaction in isolation preserves the consistency of the
database

- TIsolation (fREM)

- Although multiple transactions may execute concurrently, each
transaction must be unaware of other transactions

- Durability ($#FXi)

- After a transaction completes successfully, the changes it has made to
the database persist, even if there are system failures

Example of Fund Transfer

A transaction to transfer $50 from account A to account B:
1. read(A)
2.A:=A-50
3. write(A)
4. read(B)
5. B := B+ 50
6. write(B)

Consistency requirement
- The sum of A and B is unchanged by the execution of the transaction
Atomicity requirement

- If the transaction fails after step 3 and before step 6, the system should
ensure that its updates are not reflected in the database. Otherwise, an
inconsistency will occur

Example of Fund Transfer (Cont.)

Durability requirement

- Once the user was notified that the transaction has completed, the
updates to the database by the transaction must persist despite
failures

Isolation requirement

- If between steps 3 and 6, another transaction is allowed to access the
partially updated database, it will see an inconsistent database

- Can be ensured trivially by running transactions serially, i.e., one after
the other. However, executing multiple transactions concurrently has
significant benefits

Transaction State

- Active(GEEX)

- The initial state. The transaction stays in this state while it is executing

- Partially committed(E1R3X)

- After the final statement has been executed

+ Failed(5c)

- After discovering that normal execution can no longer proceed

Aborted(i?ﬁ)

After the transaction has been rolled back ([Eli&) and the database
restored to its state prior to the start of the transaction

- Restart the transaction - only if no internal logical error happens in the
transaction

- Kill the transaction - problems arising with the transaction, input data, no
desirable data found in the database

+ Committed(123%)

- After successful completion

- Terminated(43R)

- A transaction is said to have terminated if it has either committed or
aborted

partially
committed

aborted

® Transaction Concept
@ Schedules

® Serializable Schedule
® Recoverable Schedule

® Testing for Serializability

10

Concurrent Executions

Concurrent execution
- Multiple transactions are allowed to run concurrently in the system
- Advantages
» Increase processor and disk utilization

- Reduce average response time

Concurrency control

- Mechanisms to achieve isolation, i.e., fo control the interaction among
the concurrent transactions in order to prevent them from destroying
the consistency of the database

11

Schedules

+ Schedule (IBE) - -
sequences that indicate the chronological order read(A)
in which instructions of concurrent transactions A=A -50
are executed write (A)
- aschedule for a set of transactions must consist read(B)
of all instructions of those transactions fv ;;e]?B’; =
- must preserve the order in which the read(A)
instructions appear in each individual transaction. termp = A * 0.1
. A:=A- tem
Example write(A) "
- Let T, transfer $50 from A to B,and T, read(B)
transfer 10% of the balance from A4 to B B := B + temp
- Schedule 1 is a serial schedule (£1TAE), in write(B)
which T, is followed by T,
Schedule 1

12

Example Schedule (Cont.)

* Another serial schedule where T, is followed by T,

T T Ty 1>
read(A) read(A)
A:=A-50 temp :=A*0.1
write (A) A=A — temp
read(B) write(A)
b:=B+50 read(B)
write (B) B :=B + temp

read(A) write(B)
temp := A*0.1 read(A)
A:=A- temp A=A — 50
write(A) erte(A)
read(B) read(B)
B := B + temp B:= B+ 50
write(B) write(B)
Schedule 1 Schedule 2

13

Example Schedule (Cont.)

Non-serial schedule T Ta
read(A)
- Let T, and T, be the transactions A=A =50
write(A)
defined previously read(A)
temp :=A*0.1
- Schedule 3 is not a serial schedule, A=A~ temp
o write(A)
but it is equivalent to Schedule 1 read(B)
, B:=B +50
¢ A:(A-5O)-(A-5O)*O.II(A-5O)*O.9 write(B)
. R'- _BO* read(B)
B'=B+50+(A-50)*0.1 " L
- A'+B'=A+B write(B)

Schedule 3
14

Example Schedule (Cont.)

The following concurrent schedule i I
read(A)
does not preserve the value of the =A-50
read(A)
temp .= A*0.1
sum A + B, P
- A=A-B0 write (A)
Cread(B) >
- B'=B+A*0.1
rea
- A'+B' = A+B-B0+A*0.1 z A+B B:=B+50
write (B)
B :=B + temp
_ write(B)

Schedule 4
15

® Transaction Concept

® Schedules

@ Serializable Schedule
® Recoverable Schedule

® Testing for Serializability

16

Serializability (AJ&R1T4)

* Assumption

- Each transaction preserves database consistency, thus serial execution
of a set of transactions preserves database consistency

- Serializability
- A schedule is serializable if it is equivalent to a serial schedule
- Conflict serializability (JHsEr]SR1T)
- View serializability ({IERH1T1E)
- Note

- We ignore operations other than read and write instructions. Our
simplified schedules consist of only read and write instructions

17

Conflict Serializability

Conflict

- Giveninstructions I; and I; of transactions T; and T; respectively, conflict occurs

iff there exists some item Q accessed by both I; and I}, and at least one of these
instructions write Q
- Four cases

* I; = read(Q), /; = read(Q). I; and I; (no conflict)
* I; = read(Q), I; = write(Q). (conflict)
« I; = write(Q), I; = read(Q). (conflict)
write(Q), I; = write(Q). (conflict)

. I,

Intuitively, a conflict between I; and I; forces a (logical) femporal order between them

If I; and I; are consecutive in a schedule and they do not conflict, their results would
remain the same even if they had been interchanged in the schedule 18

Conflict Serializability (Cont.)

Conflict equivalent

- If aschedule S can be transformed into a schedule S by a series of
swaps of non-conflicting instructions, we say that S and S are conflict

equivalent

- We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule
Example of a schedule that is not conflict serializable

- We are unable to swap instructions in the following schedule to obtain
either the serial schedule <T3, T,>, or the serial schedule < T,, T3>.

T3
read(Q)

write(Q)

T4

write(Q)

19

Conflict Serializability (Cont.)

Schedule 1 can be transformed

into Schedule 2, a serial schedule
where T, follows T, by a series
of swaps of non-conflicting
instructions

Therefore, Schedule 1 is conflict

serializable

Ty T; Ty T
read(A) read(A)
write(A) write(A)
ﬂ read(A) Read(B)
write(A) Write(B)
read(B) ﬂ Ij Read(A)
write(B) Write(A)
read(B) read(B)
write(B) write(B)
Schedule 1 Schedule 2

20

Conflict Serializability (Cont.)

e Example @

Scl=r1(Awl(A)r2(A)w2(A)r1(B)wl(B)r2(B)w2(B)

m Swap w2(A) a m we have
r'1(A)w1(A)%I(B)MQ(B)WZ(B)

m Swap r2(A) and (B), then:

Sc2 @I(A)rl(@@Z(A)rZ(B@

m Sc2 is equivalent to a serializable schedule Ty, T,

m Then Scl is conflict serializable

21

Conflict Serializability (Cont.)

O A conflict serializable schedule is a serializable schedule, but a serializable
schedule is not always conflict serializable.

O E.g., three transactions
T1=WI1(Y)W1(X), T2=W2(Y)W2(X), T3=W3(X)
) is serializable

is not equivalent to L1, and not conflict

m L2 is serializable, the result of the schedule is equivalent to L1(final write X is
from T3, final write Y is from T2)

22

View Serializability

- S and S are view equivalent if the following three conditions are met:
- For each data item Q, if transaction T; reads the initial value of Q in schedule S,
then transaction T; must, in schedule S, also read the initial value of Q.
- For each data item Q, if transaction T; executes read(Q) in schedule S, and that
value was produced by transaction T; (if any), then transaction T; must in schedule
S also read the value of Q that was produced by transaction T;.

- For each data item Q, the transaction (if any) that performs the final write(Q)
operation in schedule S must perform the final write(Q) operation in schedule S

» As can be seen, view equivalence is also based purely on reads and
writes alone. ”

View Serializability (Cont.)

If a schedule S is view serializable, it is view equivalent to a serial

schedule.

Every conflict serializable schedule is also view serializable.

A schedule which is view-serializable but not conflict serializable.
EQUiVGICnT to T3, T4, T6

T3 T4 T6 T3 T4 T6
read(Q) read(Q)
write(Q) fe(@) Write(Q)
write(Q) write(Q)

Every view serializable schedule that is not conflict serializable
has blind writes - write without read

24

Other Notions of Serializability

» The following schedule produces the same outcome as the serial
schedule <T,,T5>, yet it is not conflict equivalent or view equivalent

T

Ts

read(A)
A:=A-50
write(A)

read(B)
B:=B +50
write(B)

read(B)
B:=B-10
write(B)

read(A)
A:=A+10
write(A)

-+ Determining such equivalence requires analysis of operations other

than read and write.

25

 Transaction Concept

+ Schedules

+ Serializable Schedule

& Recoverable Schedule

- Testing for Serializability

26

Recoverability (AItkE M)

Recoverable schedule (AIIkERE)

- If atransaction T; reads a data items previously written by a fransaction
T;, The commit operation of T; appears before the commit operation of T;

- The following schedule is not recoverable if Tg commits immediately after
the read, because Ty reads A written by Tg, which should commit before

Ty Ts To
read(A)
write(A)
read(A)
read(B)

27

Recoverability (Cont.)

- Cascading rollback(BEER)

- A ssingle transaction failure leads to a series of transaction rollbacks
Consider the following schedule where none of the transactions has yet committed

Tho T T1»
read(A)
read(B)
write(A)
read(A)
write(A)
read(A)

- If Ty fails, Ty; and Ty, must also be rolled back
* Can lead to the undoing of a significant amount of work

28

Recoverability (Cont.)

Cascadeless schedules (FTGRELEIRIBE)

- For each pair of transactions T; and T; such that T; reads a data item
previously written by T;, the commit operation of T; appears before the
read operation of T;

- Cascading rollbacks cannot occur and every cascadeless schedule is also

recoverable

- It is desirable to restrict the schedules to those that are cascadeless

29

Transaction Definition in SQL

DML must include a construct for specifying the set of actions that
comprise a transaction

In SQL, a transaction begins implicitly
A transaction in SQL ends by:

- Commit work: commits current transaction and begins a new one.
- Rollback work: causes current transaction to abort

Levels of isolation specified by SQL-92

- Serializable - default: {FERTBITIAE

- Repeatable read: RAFERBRIZME, HWREMZBHEREER
- Read committed: RAFENERIZEE, FEKRATESE

- Read uncommitted: AIFIEEKRIRRZEIR

30

+ Transaction Concept

+ Schedules

+ Serializable Schedule

+ Recoverable Schedule

@ Testing for Serializability

31

Testing for Serializability

Given a set of transactions Ty, T,, ..., T,
Precedence graph ({i5GHE)

- A direct graph where the vertices are the transactions

- Wedraw an arc from T; to T; if the two transactions conflict, and T;
accessed the data item on which the conflict arose earlier
- We label the arc by the data item that was accessed

Example
T1 write(x) before T2 read(x)

X
T1 write(x) before T2 write(x)
T1 read(x) before T2 write(x)
e e T2 write(y) before T1 read(y)
T2 write(y) before T1 write(y)
y T2 read(y) before T1 write(y)

32

Example Schedule A

i T T3 2 Ts
read(X)
read(Y)
read(Z)
read(V)
read(W) 7’/\ T
read(W)
read(Y)
write(Y)
write(Z)
read(V)
read(Y)
write(Y) T3_/‘
read(Z)
write(Z)
Cvi?fét'g) T{>T,->T3->T4->Ts
T, >T3-5T,>T4->Ts

ecsccs l’l’l’

33

Test for Conflict Serializability

A schedule is conflict serializable if and only (1)

if its precedence graph is acyclic (FiR) 0.@
If precedence graph is acyclic, the
serializability order can be obtained by a

topological sorting of the graph.
- For example, a serializability order for Schedule *

Ainlast slidewouldbe T > T, > T3 > T, > T4

* Any others? b ©

34

Test for View Serializability

The precedence graph test for conflict serializability
must be modified to apply to a test for view
serializability

The problem of checking if a schedule is view
serializable falls in the class of NP-complete problems.
- Thus existence of an efficient algorithm is unlikely

- However practical algorithms that just check some sufficient
conditions for view serializability can still be used

35

Concurrency Control vs. Serializability Tests

Testing a schedule for serializability after it has executed is too late

Goal - to develop concurrency control protocols that will assure
serializability.
- They will generally not examine the precedence graph as it is being created

- Instead a protocol will impose a discipline that avoids non-seralizable
schedules

Tests for serializability help understand why a concurrency control
protocol is correct

36

Practice Exercises: 17.6
Exercises: 17.15

Submission DDL: 12:59pm, May 28, 2025

37

End of Lecture 12

38

