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Content of the Course 
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction 
• Part 1  Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model 
(data model, relational algebra) 

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate & 

Advanced SQL 
• Part 2  Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design 
based on E-R model 

– Lect. 6 (Mar. 27) - Ch7: Relational database 
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database 
design (Part II)

• Midterm exam:  Apr. 10

• Part 3  Data Storage & Indexing 
– Lect. 8 (Apr. 17) - Ch12/13: Storage 

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4  Query Processing & Optimization 
– May 1, holiday, no class
– Lect. 10 (May 8) -  Ch15: Query processing
– Lect. 11 (May 15 ) - Ch16: Query 

optimization 
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions  
– Lect. 13 (May 29) - Ch18: Concurrency 

control
– Lect. 14 (Jun. 5) - Ch19: Recovery system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18
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Transaction Concept
• A transaction (事务) is a unit of program execution consisting of 

multiple operations

– During transaction execution, the database may be inconsistent

– After the transaction is committed, the database must be consistent

• Two main issues

– Concurrent execution of multiple transactions: concurrency control

– Hardware failures and system crashes: system recovery
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ACID Properties
• Atomicity（原子性） 

– Either all operations of the transaction are properly reflected in the 
database or none are

• Consistency（一致性）  
– Execution of a transaction in isolation preserves the consistency of the 

database
• Isolation（隔离性）  

– Although multiple transactions may execute concurrently, each 
transaction must be unaware of other transactions 

• Durability（持久性）  
– After a transaction completes successfully, the changes it has made to 

the database persist, even if there are system failures 
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Example of Fund Transfer
• A transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

• Consistency requirement
– The sum of A and B is unchanged by the execution of the transaction

• Atomicity requirement
– If the transaction fails after step 3 and before step 6, the system should 

ensure that its updates are not reflected in the database. Otherwise, an 
inconsistency will occur
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Example of Fund Transfer (Cont.)
• Durability requirement

– Once the user was notified that the transaction has completed, the 
updates to the database by the transaction must persist despite 
failures

• Isolation requirement
– If between steps 3 and 6, another transaction is allowed to access the 

partially updated database, it will see an inconsistent database
– Can be ensured trivially by running transactions serially, i.e., one after 

the other. However, executing multiple transactions concurrently has 
significant benefits
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Transaction State
• Active(活跃)

– The initial state. The transaction stays in this state while it is executing
• Partially committed(部分提交)

– After the final statement has been executed
• Failed(失败)

– After discovering that normal execution can no longer proceed
• Aborted(夭折)

– After the transaction has been rolled back （回滚）and the database 
restored to its state prior to the start of the transaction

– Restart the transaction – only if no internal logical error happens in the 
transaction

– Kill the transaction – problems arising with the transaction, input data, no 
desirable data found in the database  

• Committed(提交)
– After successful completion

• Terminated(结束)
– A transaction is said to have terminated if it has either committed or 

aborted
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Concurrent Executions
• Concurrent execution

– Multiple transactions are allowed to run concurrently in the system
– Advantages

• Increase processor and disk utilization
• Reduce average response time

• Concurrency control 
– Mechanisms to achieve isolation, i.e., to control the interaction among 

the concurrent transactions in order to prevent them from destroying 
the consistency of the database
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Schedules
• Schedule（调度）

– sequences that indicate the chronological order 
in which instructions of concurrent transactions 
are executed

– a schedule for a set of transactions must consist 
of all instructions of those transactions

– must preserve the order in which the 
instructions appear in each individual transaction.

• Example
– Let �� transfer $50 from A to B, and �� 

transfer 10% of the balance from A to B
– Schedule 1 is a serial schedule (串行调度), in 

which �� is followed by ��
Schedule 1
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Example Schedule (Cont.)
• Another serial schedule where �� is followed by ��

Schedule 1 Schedule 2



14

Example Schedule (Cont.)
• Non-serial schedule

– Let �� and �� be the transactions 

defined previously

– Schedule 3 is not a serial schedule, 

but it is equivalent to Schedule 1

• A’=(A-50)-(A-50)*0.1=(A-50)*0.9

• B’=B+50+(A-50)*0.1

• A’+B’=A+B

Schedule 3
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Example Schedule (Cont.)

• The following concurrent schedule 

does not preserve the value of the 

sum A + B.
– A’=A-50

– B’=B+A*0.1

– A’+B’ = A+B-50+A*0.1 ≠ A+B

Schedule 4
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Serializability（可串行化）
• Assumption

– Each transaction preserves database consistency, thus serial execution 
of a set of transactions preserves database consistency

• Serializability
– A schedule is serializable if it is equivalent to a serial schedule

• Conflict serializability（冲突可串行性）

• View serializability（视图可串行性）

• Note
– We ignore operations other than read and write instructions. Our 

simplified schedules consist of only read and write instructions
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Conflict Serializability
• Conflict 

– Given instructions �� and �� of transactions �� and �� respectively, conflict occurs 
iff there exists some item Q accessed by both �� and ��, and at least one of these 
instructions write Q

– Four cases
• �� = read(Q), �� = read(Q). �� and �� (no conflict)

• �� = read(Q), �� = write(Q). (conflict)

• �� = write(Q), �� = read(Q). (conflict)

• �� = write(Q), �� = write(Q). (conflict)

• Intuitively, a conflict between �� and �� forces a (logical) temporal order between them

• If �� and �� are consecutive in a schedule and they do not conflict, their results would 
remain the same even if they had been interchanged in the schedule
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Conflict Serializability (Cont.)
• Conflict equivalent

– If a schedule � can be transformed into a schedule �′ by a series of 
swaps of non-conflicting instructions, we say that � and �′ are conflict 
equivalent

– We say that a schedule � is conflict serializable if it is conflict 
equivalent to a serial schedule

• Example of a schedule that is not conflict serializable
– We are unable to swap instructions in the following schedule to obtain 

either the serial schedule <��, ��>, or the serial schedule < ��, ��>.

�3      �4
read(Q)

         write(Q)
write(Q)
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Conflict Serializability (Cont.)

• Schedule 1 can be transformed 

into Schedule 2, a serial schedule 

where �� follows ��, by a series 

of swaps of non-conflicting 

instructions

• Therefore, Schedule 1 is conflict 

serializable

Schedule 1 Schedule 2

Read(B)
Write(B)

Read(A)
Write(A)
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Conflict Serializability (Cont.)

 Example

     Sc1=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 Swap w2(A) and r1(B)w1(B), then we have

   r1(A)w1(A)r2(A)r1(B)w1(B)w2(A)r2(B)w2(B)

 Swap r2(A) and r1(B)w1(B), then：

   Sc2＝r1(A)w1(A)r1(B)w1(B) r2(A)w2(A)r2(B)w2(B)

 Sc2 is equivalent to a serializable schedule T1,T2

 Then Sc1 is conflict serializable
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Conflict Serializability (Cont.)
 A conflict serializable schedule is a serializable schedule, but a serializable 

schedule is not always conflict serializable.

 E.g., three transactions

       T1=W1(Y)W1(X)，T2=W2(Y)W2(X)，T3=W3(X)

 L1=W1(Y)W1(X)W2(Y)W2(X)W3(X) is serializable

 L2=W1(Y)W2(Y)W2(X)W1(X)W3(X) is not equivalent to L1, and not conflict 
serializable.

 L2 is serializable, the result of the schedule is equivalent to L1(final write X is 
from T3, final write Y is from T2)
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View Serializability
• � and �′ are view equivalent if the following three conditions are met:

– For each data item Q, if transaction �� reads the initial value of Q in schedule S, 
then transaction �� must, in schedule �′, also read the initial value of Q.

– For each data item Q, if transaction �� executes read(Q) in schedule S, and that 
value was produced by transaction �� (if any), then transaction �� must in schedule 

�′ also read the value of Q that was produced by transaction ��.

– For each data item Q, the transaction (if any) that performs the final write(Q) 
operation in schedule S must perform the final write(Q) operation in schedule �′

• As can be seen, view equivalence is also based purely on reads and 
writes alone.
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View Serializability (Cont.)
• If a schedule S is view serializable, it is view equivalent to a serial 

schedule.
• Every conflict serializable schedule is also view serializable.
• A schedule which is view-serializable but not conflict serializable. 

Equivalent to T3, T4, T6

• Every view serializable schedule that is not conflict serializable 
has blind writes - write without read

Write(Q)
Write(Q)
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Other Notions of Serializability
• The following schedule produces the same outcome as the serial 

schedule <��,��>, yet it is not conflict equivalent or view equivalent

• Determining such equivalence requires analysis of operations other 
than read and write.
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Outline
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Recoverability (可恢复性)
• Recoverable schedule（可恢复调度）

– If a transaction �� reads a data items previously written by a transaction 
��, the commit operation of �� appears before the commit operation of ��

– The following schedule is not recoverable if T9 commits immediately after 
the read，because T9 reads A written by T8, which should commit before 
T9
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Recoverability (Cont.)
• Cascading rollback(级联回滚) 

– A single transaction failure leads to a series of transaction rollbacks
– Consider the following schedule where none of the transactions has yet committed

– If T10 fails, T11 and T12 must also be rolled back
• Can lead to the undoing of a significant amount of work
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Recoverability (Cont.)

• Cascadeless schedules (无级联回滚调度) 

– For each pair of transactions �� and �� such that �� reads a data item 

previously written by ��, the commit operation of �� appears before the 

read operation of ��

– Cascading rollbacks cannot occur and every cascadeless schedule is also 

recoverable

– It is desirable to restrict the schedules to those that are cascadeless
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Transaction Definition in SQL
• DML must include a construct for specifying the set of actions that 

comprise a transaction
• In SQL, a transaction begins implicitly
• A transaction in SQL ends by:

– Commit work: commits current transaction and begins a new one.
– Rollback work: causes current transaction to abort

• Levels of isolation specified by SQL-92
– Serializable – default：保证可串行化调度
– Repeatable read：只允许读取已提交数据，两次读取之间数据不能更新
– Read committed：只允许读取已提交数据，不要求可重复读
– Read uncommitted：允许读取未提交数据
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Outline
• Transaction Concept
• Schedules
• Serializable Schedule
• Recoverable Schedule
 Testing for Serializability



32

Testing for Serializability
• Given a set of transactions T1, T2, ..., Tn

• Precedence graph（优先图）
– A direct graph where the vertices are the transactions
– We draw an arc from �� to �� if the two transactions conflict, and �� 

accessed the data item on which the conflict arose earlier
– We label the arc by the data item that was accessed

• Example
x

y

T1 write(x) before T2 read(x)
T1 write(x) before T2 write(x)
T1 read(x)  before T2 write(x)

T2 write(y) before T1 read(y)
T2 write(y) before T1 write(y)
T2 read(y)  before T1 write(y)
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Example Schedule A
T1  T2  T3  T4  T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

T3 T4

T1 T2

Y

Y
Z

Z

Y,Z

�� → �� → �� → �� → ��
�� → �� → �� → �� → ��
……???



34

Test for Conflict Serializability

• A schedule is conflict serializable if and only 

if its precedence graph is acyclic（无环）

• If precedence graph is acyclic, the 

serializability order can be obtained by a 

topological sorting of the graph. 

– For example, a serializability order for Schedule 

A in last slide would be �� → �� → �� → �� → ��

• Any others?
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Test for View Serializability
• The precedence graph test for conflict serializability 

must be modified to apply to a test for view 
serializability

• The problem of checking if a schedule is view 
serializable falls in the class of NP-complete problems.  
– Thus existence of an efficient algorithm is unlikely
– However practical algorithms that just check some sufficient 

conditions for view serializability can still be used
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Concurrency Control vs. Serializability Tests

• Testing a schedule for serializability after it has executed is too late

• Goal – to develop concurrency control protocols that will assure 
serializability.  
– They will generally not examine the precedence graph as it is being created
– Instead a protocol will impose a discipline that avoids non-seralizable 

schedules

• Tests for serializability help understand why a concurrency control 
protocol is correct
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Assignments

• Practice Exercises: 17.6
• Exercises: 17.15

• Submission DDL:  12:59pm, May 28, 2025
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End of Lecture 12


