
1复旦大学计算机科学技术学院

Lecture 12: Concurrency Control
第12讲：并发控制

周水庚 / Shuigeng Zhou

邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Outline of the Course
• Part 0: Overview

– Lect. 1 (Feb. 29) - Ch1: Introduction

• Part 1 Relational Databases
– Lect. 2 (Mar. 7) - Ch2: Relational model

(data model, relational algebra)
– Lect. 3 (Mar. 14) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 21) – Ch4/5: Intermediate and

Advanced SQL

• Part 2 Database Design
– Lect. 5 (Mar. 28) - Ch6: Database design

based on E-R model
– Apr. 4 (Tomb-Sweeping Day): no course
– Lect. 6 (Apr. 11/18) - Ch7: Relational

database design

• Midterm exam: Apr. 25
– 13：00-15：00，H3109

• Part 3 Data Storage & Indexing
– Lect. 7 (May 2 -> Apr. 28) - Ch12/13:

Storage systems & structures
– Lect. 8 (May 10) - Ch14: Indexing and

Hashing

• Part 4 Query Processing & Optimization
– Lect. 9 (May 17) - Ch15: Query processing
– Lect. 10 (May 24) - Ch16: Query

optimization

 Part 5 Transaction Management
– Lect. 11 (May 30) - Ch17: Transaction

processing

– Lect. 12 (May 30/Jun. 6) - Ch18:
Concurrency control

– Lect. 13 (Jun. 13) - Ch19: System recovery

Final exam: 13:00-15:00, Jun. 26

3

Outline

 Concurrent Control

• Lock-based Protocols

• Graph-based Protocols

• Multiple Granularity

• Deadlock Handling

4

Concurrent Control Problems

• Problems caused by concurrent transactions

– Lost Update (丢失修改)

– Non-repeatable Read (不可重复读)

– Dirty Read (读“脏”数据)

• Symbols

– R(x): read x

– W(x): write x

5

Lost Update

• T1 and T2 read the same data

item and modify it

• The committed result of T2

eliminates the update of T1

T1 T2

① R(A)=16

② R(A)=16

③ A←A-1

W(A)=15

④ A←A-1

W(A)=15

6

Non-repeatable Read

• T1 reads B=100

• T2 reads B, then updates B=200,

and writes back B

• T1 reads B again, and B=200, not

the same as the first read

• Phantom Phenomenon (幻影现象)

– records disappear or new records

appear for the same query

T1 T2

① R(A)=50

R(B)=100

sum=150

② R(B)=100

B←B*2

W(B)=200

③ R(A)=50

R(B)=200

sum=250

(sum is not
correct)

7

Dirty Read

• T1 modifies C to 200, T2 reads C

as 200

• T1 rolls back for some reason and

its modification also rolls back.

Then C recovers to 100

• T2 reads C as 200, which is not

consistent with the database

T1 T2

① R(C)=100

C←C*2

W(C)=200

② R(C)=200

③ ROLLBACK

C recover
to 100

8

Outline

• Concurrent Control

 Lock-based Protocols

• Graph-based Protocols

• Multiple Granularity

• Deadlock Handling

9

Lock-based Protocols

• A lock is a mechanism to control concurrent access to a data item

• Data items can be locked in two modes

– exclusive (X) mode (排他型). Data item can be read and written. X-lock

is requested using lock-X instruction

– shared (S) mode (共享型). Data item can only be read. S-lock is

requested using lock-S instruction

• Lock requests are made to concurrency control manager (并发控制管

理器). Transaction can proceed only after the request is granted.

10

Lock-based Protocols (Cont.)

• Lock-compatibility matrix (锁相容性矩阵)

• A transaction may be granted a lock on a data item if the
requested lock is compatible with locks already held on the data item
by other transactions.

• If a lock cannot be granted, the requesting transaction waits till all
incompatible locks have been released. The lock is then granted.

11

No Lost Update

T1 T2

① Xlock A

② R(A)=16

Xlock A

③ A←A-1 wait

W(A)=15 wait

Commit wait

Unlock A wait

④ Get Xlock A

R(A)=15

A←A-1

⑤ W(A)=14

Commit

Unlock A

12

Repeatable Read
T1 T2

① Slock A
Slock B

R(A)=50
R(B)=100

sum=150

② Xlock B

wait

wait
③ R(A)=50 wait

R(B)=100 wait

sum=150 wait

Commit wait

Unlock A wait
Unlock B wait

④ get XlockB
R(B)=100
B←B*2

⑤ W(B)=200

Commit

Unlock B

13

No Dirty Read
T1 T2

① Xlock C

R(C)=100

C←C*2

W(C)=200

② Slock C

wait

③ ROLLBACK wait

(C rec. 100) wait

Unlock C wait

④ Get Slock C

R(C)=100

⑤ Commit C

Unlock C

14

Lock-based Protocols
T: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

• Locking as above is not sufficient to guarantee serializability. If A and B get
updated in-between the read of A and B, the displayed sum would be wrong

• A locking protocol is a set of rules

– followed by all transactions while requesting and releasing locks

– locking protocols restrict the set of possible schedules

15

Deadlock (死锁)

• Consider the following partial schedule

• Such a situation is called a deadlock
– To handle the deadlock, T3 or T4 must be rolled back and release its locks

– Deadlock exists in most locking protocols

16

Starvation (饥饿)

• Starvation

– E.g., a transaction may be waiting for an X-lock on a data item, while a

sequence of other transactions request and are granted an S-lock on the

same data item

– The same transaction is repeatedly rolled back due to deadlocks

• Concurrency control manager can be designed to prevent starvation

17

Two-Phase Locking Protocol（两阶段加锁协议）

• 2PL is a protocol which ensures conflict-serializable schedules

– Phase 1: Growing Phase (增长阶段)

• transaction can obtain locks but cannot release locks

– Phase 2: Shrinking Phase (缩减阶段）

• transaction can release locks but cannot obtain locks

• The protocol assures serializability. It can be proved that the transactions

can be serialized in the order of their lock points (封锁点)

– Lock point: 事务获得最后加锁的位置 J. D. Ullman. Principles of

Databse and Knowledge-

base Systems. 1988

18

The Two-Phase Locking Protocol

• Satisfy 2PL

Slock A Slock B Xlock C Unlock B Unlock A Unlock C；

|← Growing →| |← Shrinking →|

• Not satisfy 2PL

Slock A Unlock A Slock B Xlock C Unlock C Unlock B；

19

The Two-Phase Locking Protocol
T1 T2

Slock(A)
R(A=260)

Slock(C)
R(C=300)

Xlock(A)
W(A=160)

Xlock(C)
W(C=250)
Slock(A)

Slock(B) wait
R(B=1000) wait
Xlock(B) wait
W(B=1100) Wait
Unlock(A) wait

R(A=160)
Xlock(A)

Unlock(B)
W(A=210)
Unlock(C)
Unlock(A)

2PL ensures serializable schedules

20

The Two-Phase Locking Protocol

• Two-phase locking cannot avoid deadlocks

• Example:

21

The Two-Phase Locking Protocol

• Cascading roll-back is possible under two-phase locking

– To avoid this, follow a modified protocol called strict two-phase locking

(严格两阶段封锁)

– A transaction must hold all its exclusive locks till it commits

22

The Two-Phase Locking Protocol

• Rigorous two-phase locking (强两阶段封锁) is even stricter

– all locks are held till commit/abort

– transactions can be serialized in the order in which they commit

23

Lock Conversions (锁转换)

• Two-phase locking with lock

conversions

– Upgrade (升级)

• lock-S -> lock-X

– Downgrade (降级)

• lock-X -> lock-S

• This protocol assures

serializability

T8： read(a1)

read(a2)

…

read(an)

write(a1)

T9: read(a1)

read(a2)

display(a1+a2)

24

Lock Conversions (锁转换)

• Two-phase locking with lock conversions

– First Phase:

• can acquire a lock-S on item

• can acquire a lock-X on item

• can convert a lock-S to a lock-X (upgrade)

– Second Phase:

• can release a lock-S

• can release a lock-X

• can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability

25

Automatic Acquisition of Locks
• A transaction 𝑻𝒊 issues the standard read/write instruction, without

explicit locking calls

• The operation read(D) is processed as:

if 𝑻𝒊 has a lock on D

then

read(D)

else

begin

if necessary wait until no other transactions have a lock-X on D

grant 𝑻𝒊 a lock-S on D;

read(D)

end

26

Automatic Acquisition of Locks (Cont.)
• write(D) is processed as:

if 𝑻𝒊 has a lock-X on D
then

write(D)
else

begin
if necessary wait until no other transactions have any lock on D
if 𝑻𝒊 has a lock-S on D

then
upgrade lock on D to lock-X

else
grant 𝑻𝒊 a lock-X on D
write(D)

end;

• All locks are released after commit

27

Implementation of Locking

• Lock manager (锁管理器)

– A lock manager can be implemented as a separate process to which transactions
send lock and unlock requests

– The lock manager replies to a lock request by sending a lock grant messages (or a
message asking the transaction to roll back, in case of a deadlock)

– The requesting transaction waits until its request is answered

– The lock manager maintains a data-structure called a lock table (锁表) to record
granted locks and pending requests

• The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

28

Lock Table
• Black rectangles indicate granted locks, and white

ones indicate waiting requests

• Lock table also records the type of lock granted or
requested

• New request is added to the end of the queue of
requests for the data item, and granted if it is
compatible with all earlier locks

• Unlock requests result in the related locks being
deleted, and waiting requests are checked to see if
they can now be granted

• If transaction aborts, all waiting or granted requests
of the transaction are deleted

– lock manager may keep a list of locks held by
each transaction, to implement this efficiently

29

Outline

• Concurrent Control

• Lock-based Protocols

 Graph-based Protocols

• Multiple Granularity

• Deadlock Handling

30

Graph-based Protocols

• Graph-based protocols are an alternative to two-phase locking

– Impose a partial ordering →(偏序) on the set 𝑫 = {𝒅𝟏, 𝒅𝟐, … , 𝒅𝒉} of all

data items

– If 𝒅𝒊 → 𝒅𝒋 then any transaction accessing both 𝒅𝒊 and 𝒅𝒋 must access 𝒅𝒊

before accessing 𝒅𝒋

– Implies that the set D may now be viewed as a directed acyclic graph,

called a database graph

• The tree-protocol is a simple kind of graph protocol.

31

Tree Protocol

• Only exclusive locks are allowed

– The first lock by 𝑻𝒊 may be on any data item

– Subsequently, a data Q can be locked by

𝑻𝒊 only if the parent of Q is currently locked

by 𝑻𝒊

– Data items may be unlocked at any time

– A data item cannot be relocked by 𝑻𝒊

32

Graph-based Protocols

T11 -> T10 ->T12 ->T13

T11 -> T10 ->T13 ->T12

33

Graph-based Protocols

• The tree protocol ensures conflict serializability as well as

freedom from deadlock

• Unlocking may occur earlier than in the two-phase locking protocol-2PL

– shorter waiting times, and increase in concurrency

– protocol is deadlock-free, no rollbacks are required

– the abort of a transaction can still lead to cascading rollbacks

• However, may have to lock data items that it does not access

– increased locking overhead, and additional waiting time

– potential decrease in concurrency

34

Timestamp-based Protocols
• Each transaction is issued a timestamp when it enters the system.

If an old transaction 𝑻𝒊 has timestamp TS(𝑇𝑖), a new transaction 𝑻𝒋
is assigned timestamp TS(𝑇𝑗) such that TS(𝑻𝒊) <TS(𝑻𝒋).

• The protocol manages concurrent execution such that the
timestamps determine the serializability order

• In order to assure such behavior, the protocol maintains for each
data Q two timestamp values:
– W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q) successfully

– R-timestamp(Q) is the largest time-stamp of any transaction that executed
read(Q) successfully.

35

Timestamp-based Protocols (Cont.)

• The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order

• Suppose a transaction 𝑻𝒊 issues a read(Q)

– If TS(𝑻𝒊) < W-timestamp(Q), then 𝑻𝒊 needs to read a value of Q that

was already overwritten

• the read operation is rejected, and 𝑻𝒊 is rolled back

– If TS(𝑻𝒊) ≥ W-timestamp(Q), then the read operation is executed,

and R-timestamp(Q) is set to max(R-timestamp(Q), TS(𝑻𝒊))

36

Timestamp-based Protocols (Cont.)
• Suppose that transaction 𝑻𝒊 issues write(Q).

– If TS(𝑻𝒊) < R-timestamp(Q), then the value of Q that 𝑻𝒊 is producing

was needed previously, and the system assumed that that value would

never be produced.

• Hence, the write operation is rejected, and 𝑻𝒊 is rolled back.

– If TS(𝑻𝒊) < W-timestamp(Q), then 𝑻𝒊 is attempting to write an

obsolete value of Q.

• Hence, this write operation is rejected, and 𝑻𝒊 is rolled back.

– Otherwise, the write operation is executed, and W-timestamp(Q) is

set to TS(𝑻𝒊).

37

Timestamp-based Protocols (Cont.)

T25 -> T26

38

Timestamp-based Protocols (Cont.)

• The timestamp-ordering protocol guarantees serializability since all the
arcs in the precedence graph are of the form:

– Thus, there will be no cycles in the precedence graph

• Timestamp protocol ensures freedom from deadlock as no transaction ever
waits

• But the schedule may not be cascade-free, and may not even be recoverable

transaction
with smaller
timestamp

transaction
with larger
timestamp

39

Outline

• Concurrent Control

• Lock-based Protocols

• Graph-based Protocols

 Multiple Granularity

• Deadlock Handling

40

Multiple Granularity

• Allow data items to be of various sizes and define a hierarchy of data
granularities
– Database -> tables -> tuples -> attributes

• Can be represented graphically as a tree

• When a transaction locks a node in the tree explicitly, it implicitly
locks all the node's descendants in the same mode

• Granularity of locking:
– fine granularity (lower in tree): high concurrency, high locking overhead

– coarse granularity (higher in tree): low locking overhead, low concurrency

41

Example of Granularity Hierarchy

• The highest level in the example hierarchy is the entire database.

• The levels below are of type area, file (table) and record (tuple) in
that order.

How to efficiently
determine whether

a lock can be
imposed on a node?

42

Intention Lock (意向锁) Modes
• Three additional lock modes with multiple granularity:

– intention-shared (IS)
• indicates explicit locking at a lower level of the tree but only with shared

locks

– intention-exclusive (IX)
• indicates explicit locking at a lower level with exclusive or shared locks

– shared and intention-exclusive (SIX)
• the subtree rooted by that node is locked explicitly in shared mode and

explicit locking is being done at a lower level with exclusive-mode locks

• Intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

43

Compatibility Matrix with Intention Lock Modes

IS IX S SIX X

IS

IX

S

SIX

X

✓

✓

✓

✓

✓ ✓ ✓

✓

✓

44

Multiple Granularity Locking Scheme
• Transaction 𝑻𝒊 can lock a node Q, using the following rules:

– The lock compatibility matrix must be observed.

– The root of the tree must be locked first, and may be locked in any mode.

– A node Q can be locked by 𝑻𝒊 in S or IS mode only if the parent of Q is currently
locked by 𝑻𝒊 in either IX or IS mode.

– A node Q can be locked by 𝑻𝒊 in X, SIX, or IX mode only if the parent of Q is
currently locked by 𝑻𝒊 in either IX or SIX mode.

– 𝑻𝒊 can lock a node only if it has not previously unlocked any node (that is, 𝑻𝒊 is two-
phase).

– 𝑇𝑖 can unlock a node Q only if none of the children of Q are currently locked by 𝑻𝒊.

• Locks are acquired in root-to-leaf order, whereas they are released in leaf-
to-root order

• The multiple-granularity locking protocol can ensure serializability

• Deadlock is possible in the multiple-granularity protocol, as it is in the
two-phase locking protocol

45

Multiple Granularity Locking Scheme

• Suppose that transaction T21 reads record ra2

in file Fa. Then, T21 needs to lock the
database, area A1, and Fa in IS mode (and in
that order), and finally to lock ra2 in S mode.

• Suppose that transaction T22 modifies record
ra9 in file Fa. Then, T22 needs to lock the
database, area A1, and file Fa (and in that
order) in IX mode, and finally to lock ra9 in X
mode.

• Suppose that transaction T23 reads all the
records in file Fa. Then, T23 needs to lock the
database and area A1 (and in that order) in IS
mode, and finally to lock Fa in S mode.

• Suppose that transaction T24 reads the
entire database. It can do so after locking the
database in S mode

46

Outline

• Concurrent Control

• Lock-based Protocols

• Graph-based Protocols

• Multiple Granularity

 Deadlock Handling

47

Deadlock Handling

• Consider the following two transactions:

T1: write(X) T2: write(Y)

write(Y) write(X)

• Schedule with deadlock

T1 T2

lock-X on X
write (X)

lock-X on Y
write (Y)
wait for lock-X on X

wait for lock-X on Y

48

Deadlock Handling

• System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set

• Deadlock prevention protocols ensure that the system will never

enter into a deadlock state.

– Require that each transaction locks all its data items before it begins

execution (pre-declaration).

– Impose partial ordering of all data items and require that a transaction

can lock data items only in the order specified by the partial order (graph-

based protocol).

49

More Deadlock Prevention Strategies
• Following schemes use transaction timestamps for the sake of

deadlock prevention
– wait-die scheme — non-preemptive(非抢占)

• older transactions wait for younger ones to release data items,
younger transactions never wait for older ones and roll back instead.

• one transaction may die several times before acquiring the needed
data item

– wound-wait scheme — preemptive(抢占)

• older transactions would force the rollback of younger transactions
instead of waiting for them, younger transactions may wait for older
ones.

• may be fewer rollbacks than wait-die scheme

50

Deadlock Prevention (Cont.)
• Both in wait-die and in wound-wait schemes

– a rolled back transactions is restarted with its original timestamp

– older transactions thus have precedence over newer ones, and starvation
is hence avoided

• Timeout-based schemes (基于超时的机制)
– a transaction waits for a lock for a specified amount of time. After that,

the transaction is rolled back

– thus deadlocks are not possible

– simple to implement but starvation is possible. Also difficult to determine
the good value of the timeout interval.

51

Deadlock Detection

• Deadlocks can be described as a wait-for graph(等待图) G = (V,E)

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair 𝑇𝑖 → 𝑇𝑗

– If 𝑻𝒊 → 𝑻𝒋 is in E, then there is a directed edge from 𝑻𝒊 to 𝑻𝒋, implying

that 𝑻𝒊 is waiting for 𝑻𝒋 to release a data item

• The system is in a deadlock state iff the wait-for graph has a cycle.

Must invoke a deadlock-detection algorithm periodically to look for

cycles.

52

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

53

Deadlock Recovery

• When deadlock is detected

– Some transaction needs to roll back

– Rollback -- determine how far to roll back the transaction

• Total rollback: abort the transaction and then restart it

• Partial rollback: more effective to roll back transaction only as far as

necessary to break the deadlock

– Starvation happens if same transaction is always chosen as victim

– Include the number of rollbacks in the cost factor to avoid starvation

54

Assignments

• Practice exercises: 18.2

• Submission: 12:59pm, June 12, 2024

55

End of Lecture 12

	标题
	幻灯片 1
	幻灯片 2: Outline of the Course
	幻灯片 3: Outline
	幻灯片 4: Concurrent Control Problems
	幻灯片 5: Lost Update
	幻灯片 6: Non-repeatable Read
	幻灯片 7: Dirty Read
	幻灯片 8: Outline
	幻灯片 9: Lock-based Protocols
	幻灯片 10: Lock-based Protocols (Cont.)
	幻灯片 11: No Lost Update
	幻灯片 12: Repeatable Read
	幻灯片 13: No Dirty Read
	幻灯片 14: Lock-based Protocols
	幻灯片 15: Deadlock (死锁)
	幻灯片 16: Starvation (饥饿)
	幻灯片 17: Two-Phase Locking Protocol（两阶段加锁协议）
	幻灯片 18: The Two-Phase Locking Protocol
	幻灯片 19: The Two-Phase Locking Protocol
	幻灯片 20: The Two-Phase Locking Protocol
	幻灯片 21: The Two-Phase Locking Protocol
	幻灯片 22: The Two-Phase Locking Protocol
	幻灯片 23: Lock Conversions (锁转换)
	幻灯片 24: Lock Conversions (锁转换)
	幻灯片 25: Automatic Acquisition of Locks
	幻灯片 26: Automatic Acquisition of Locks (Cont.)
	幻灯片 27: Implementation of Locking
	幻灯片 28: Lock Table
	幻灯片 29: Outline
	幻灯片 30: Graph-based Protocols
	幻灯片 31: Tree Protocol
	幻灯片 32: Graph-based Protocols
	幻灯片 33: Graph-based Protocols
	幻灯片 34: Timestamp-based Protocols
	幻灯片 35: Timestamp-based Protocols (Cont.)
	幻灯片 36: Timestamp-based Protocols (Cont.)
	幻灯片 37: Timestamp-based Protocols (Cont.)
	幻灯片 38: Timestamp-based Protocols (Cont.)
	幻灯片 39: Outline
	幻灯片 40: Multiple Granularity
	幻灯片 41: Example of Granularity Hierarchy
	幻灯片 42: Intention Lock (意向锁) Modes
	幻灯片 43: Compatibility Matrix with Intention Lock Modes
	幻灯片 44: Multiple Granularity Locking Scheme
	幻灯片 45: Multiple Granularity Locking Scheme
	幻灯片 46: Outline
	幻灯片 47: Deadlock Handling
	幻灯片 48: Deadlock Handling
	幻灯片 49: More Deadlock Prevention Strategies
	幻灯片 50: Deadlock Prevention (Cont.)
	幻灯片 51: Deadlock Detection
	幻灯片 52: Deadlock Detection (Cont.)
	幻灯片 53: Deadlock Recovery
	幻灯片 54: Assignments
	幻灯片 55: End of Lecture 12

