
1复旦大学计算机科学技术学院

Lecture 10: Query Processing
第10讲：查询处理

周水庚  / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn   网址：admis.fudan.edu.cn/sgzhou 

Introduction to Databases
《数据库引论》



2

Content of the Course 
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction 
• Part 1  Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model 
(data model, relational algebra) 

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate & 

Advanced SQL 
• Part 2  Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design 
based on E-R model 

– Lect. 6 (Mar. 27) - Ch7: Relational database 
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database 
design (Part II)

• Midterm exam:  Apr. 10

• Part 3  Data Storage & Indexing 
– Lect. 8 (Apr. 17) - Ch12/13: Storage 

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4  Query Processing & Optimization 
– May 1, holiday, no class
– Lect. 10 (May 8) -  Ch15: Query processing
– Lect. 11 (May 15 ) - Ch16: Query 

optimization 
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions  
– Lect. 13 (May 29) - Ch18: Concurrency 

control
– Lect. 14 (Jun. 5) - Ch19: Recovery system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18



3

Database 
System 

Structure 

Database

DBMS

Applications/tools

Users



4

Outline

 Overview 
• Measures of Query Cost
• Selection Operation 
• Sorting 
• Join Operation 
• Other Operations
• Evaluation of Expressions



5

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

SQL query



6

Basic Steps in Query Processing

• Parsing and translation
– translate the query into the internal form which is then translated into 

relational algebra
• Optimization

– Generate the optimal execution plan (执行计划)
• Execution

– The query execution engine executes the evaluation plan, and returns 
the answers to the query



7

Query Optimization

select salary
from instructor
where salary < 75000

给出对应的关系代数表达式

�������<�����(�������(����������  

�������(�������<�����(����������  



8

Query Optimization

• A relational algebra expression may have many equivalent expressions

• Annotated expression specifying detailed execution strategy is called 

an execution-plan

– can use an index on instructor to find instructors with salary < 75000, or

– perform complete relation scan and discard instructors with salary ≥ 

75000



9

Query Optimization (Cont.)
• Query Optimization

– Amongst all equivalent evaluation plans, choose the one with lowest cost
– Cost is estimated using statistical information from the database catalog

• This lecture
– How to measure query costs
– Algorithms for evaluating relational algebra operations
– Combine algorithms for individual operations to evaluate a complete 

expression
• Next lecture

– The way to find an execution plan with the lowest estimated cost



10

Outline

• Overview 
 Measures of Query Cost
• Selection Operation 
• Sorting 
• Join Operation 
• Other Operations
• Evaluation of Expressions



11

Measures of Query Cost
• Cost is generally measured as total elapsed time for answering query

– disk accesses, CPU, and even network communication
• Typically disk access is the predominant cost, and is also relatively 

easy to be estimated
• Disk access is measured by taking into account

– Number of seeks
– Number of blocks read
– Number of blocks written

• The cost to write a block is greater than the cost to read a block 
• Data is read back after being written to ensure that the write was successful



12

Measures of Query Cost (Cont.)
• For simplicity, use the number of block transfers from disk and 

the number of seeks as the cost measure
• Cost for � block transfers plus � seeks

        � ∗ �� + � ∗ �� 
– �� – time to transfer one block, ≈0.1ms
– �� – time for one seek, ≈4ms

• Cost also depends on the size of the buffer in main memory
– Large buffer reduces the need for disk access
– Often use worst case estimates, assuming only the minimum amount of 

buffer storage is available



13

Outline

• Overview 
• Measures of Query Cost
 Selection Operation 
• Sorting 
• Join Operation 
• Other Operations
• Evaluation of Expressions



14

Selection Operation
• File scan (文件扫描)

– Search algorithms that locate and retrieve records that satisfy a 

selection condition

• Index scan (索引扫描)

– Search algorithms that use an index

– Selection condition must be on search-key of an index



15

Selection Operation
• Algorithm A1 (linear search, 线性搜索)

– Cost estimate = �� block transfers + 1 seek (前提：文件块顺序存放)
• br  denotes number of blocks containing records from relation r

– If selection is on a key attribute, can stop on finding record
• average cost = (br /2) block transfers + 1 seek

– Linear search can be applied regardless of 
• selection condition or
• ordering of records in the file, or 
• availability of indices



16

Selection Operation (Cont.)
• A1’ (binary search).  

– Applicable if selection is an equality comparison on the attribute on 
which file is ordered. 

– Assume that the blocks of a relation are stored contiguously 
– Cost estimate (number of disk blocks to be scanned):

• cost of locating the first tuple by a binary search on the blocks 
– worst cost log2(br) * (tT + tS)

• If there are multiple records satisfying selection
– Add transfer cost of the number of blocks containing 

records that satisfy selection condition 



17

Selections Using Indices
• A2 (primary index on candidate key, equality)

– Retrieve a single record that satisfies the corresponding equality condition  
– Cost = (�� + 1) * (�� + ��)          (B+-tree)

• A3 (primary index on non-key, equality) Retrieve multiple records
– Records will be on consecutive blocks

• Let � = number of blocks containing matching records
– Cost = �� ∗ (�� + ��) + �� + �� ∗ �
         �� is the height of the 

index, i.e., the number of 
levels of the trees. �� =1 
means that there is only 
the root node��

B+ tree



18

Selections Using Indices (Cont.)
• A4 (equality on search-key of secondary index).

– Retrieve a single record if the search-key is a candidate key

• Cost = (�� + 1) * (�� + ��)

– Retrieve multiple records if search-key is not a candidate key

• Assume that � records satisfy the search condition

• Cost =  (�� + �) * (�� + ��) 

– Can be very expensive!

• Each record may be on a different block  

– one block access for each retrieved record



19

Selections Involving Comparisons
• Implement selections of the form ��≤�(�  or ��≥�(�  by

– using a linear file scan or binary search, or
– using indices in the following ways:

• A5 (primary index, comparison). 
– Relation is sorted on A
– For A  V(r)  use index to find first tuple  v  and scan relation 

sequentially from there
– For AV (r) just scan relation sequentially till first tuple > v; do not use 

index



20

Selections Involving Comparisons (Cont.)
• A6 (secondary index, comparison). 

– For A  V (r)  use index to find first index entry  v and scan 
index sequentially from there, to find pointers to records.

– For AV (r) just scan leaf pages of index finding pointers to 
records, till first entry > v

– In either case, retrieve records that are pointed to
• requires an I/O for each record
• Linear file scan may be cheaper if many records are 

 to be fetched!



21

Selection Operation Cost Estimation

�� ∗ (�� + ��) + 
�� + �� ∗ �

�� ∗ (�� + ��) + 
�� + �� ∗ �



22

Selection Operation Cost Estimation



23

Implementation of Complex Selections
• Conjunction (合取): ���⋀��∧⋯⋀��(�   
• A7 (conjunctive selection using one index) 

– Select a condition of �� and algorithms A1 through A6 that results in the least 
cost for ���(� 

– Test other conditions on the tuples after fetching them into memory buffer
• A8 (conjunctive selection using multiple-key index)

– Use appropriate composite (multiple-key) index if available
• A9 (conjunctive selection by intersection of identifiers) 

– Requires indices with record pointers 
– Use corresponding index for each condition, and take intersection of all 

the obtained sets of record pointers
– Then fetch records from file



24

Implementation of Complex Selections (Cont.)
• Disjunction (析取): ���∨��∨⋯∨��(�  
• A10 (disjunctive selection by union of identifiers). 

– Applicable if all conditions have available indices
• Otherwise use linear scan

– Use the corresponding index for each condition, and take union of all the 
obtained sets of record pointers. 

– Then fetch records from file

• Negation (取反): �¬�(� 
– Use linear scan on file
– If very few records satisfy , and an index is applicable to 

• Find satisfying records using index and fetch from file



25

Outline

• Overview 
• Measures of Query Cost
• Selection Operation 
 Sorting 
• Join Operation 
• Other Operations
• Evaluation of Expressions



26

Sorting
• We can build an index on the relation, and then use the index to read 

the relation in sorted order. 

– May lead to one disk block access for each tuple (for non-primary indices)

• Relations that fit in memory

– Techniques like quick-sort (快速排序) can be used

• Relations that don’t fit in memory

– External sort-merge (外部排序归并) is a good choice 



27

排序的稳定性和复杂度

• 插入排序、选择排序、冒泡排序、快速排序、堆排序、归并排
序、希尔排序、二叉树排序、计数排序、桶排序、基数排序…

• 不稳定
– 选择排序（selection sort）: O(n2) 
– 快速排序（quicksort）: O(nlogn) 平均时间, O(n2) 最坏情况; 对于大的
、乱序串列一般认为是最快的已知排序

– 堆排序 （heapsort）: O(nlogn)
– 希尔排序 （shell sort）: O(nlogn)
– 基数排序（radix sort）: O(n·k); 需要 O(n) 额外存储空间 （K为特征个
数）



28

排序的稳定性和复杂度

• 插入排序、选择排序、冒泡排序、快速排序、堆排序、归并排
序、希尔排序、二叉树排序、计数排序、桶排序、基数排序…

• 稳定
– 插入排序（insertion sort）: O(n2) 
– 冒泡排序（bubble sort）: O(n2)
– 归并排序 （merge sort）: O(n log n); 需要 O(n) 额外存储空间
– 二叉树排序（Binary tree sort）: O(nlogn); 需要 O(n) 额外存储空间
– 计数排序  (counting sort) : O(n+k); 需要 O(n+k) 额外存储空间，k为序
列中Max-Min+1

– 桶排序 （bucket sort）: O(n); 需要 O(k) 额外存储空间



29

External Sort-Merge (外部排序归并)
• Relations that don’t fit in memory
• Let � denote memory buffer size (in blocks)
• Create sorted runs (创建归并段)

let � = � initially
repeatedly do the following till the end of the relation:
     read M blocks of relation into memory
     sort the in-memory blocks
     write sorted data to run ��

     increment �
let the final value of � = � (N-way merge)

Assume:
1. Only one tuple fits in a block
2. Memory holds at most 3 blocks, 2 

for input and 1 for output



30

External Sort-Merge

M Main memory buffers

INPUT 1

INPUT M
DiskDisk

INPUT 2

. . .. . .

M Main memory buffers

INPUT 1

INPUT M-1

OUTPUT

DiskDisk

INPUT 2

. . .. . .

Make runs

Merge



31

External Sort-Merge (cont.)
• Merge the runs (N-way merge, N路归并). We assume N < M

Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read 
the first block of each run into its buffer page
repeat

select the first record (in sort order) among all buffer blocks
write the record to the output buffer block. If the output buffer is 
full, write it to disk
delete the record from the input buffer block
If the buffer block becomes empty then
      read the next block of the run into the buffer

until all input buffer blocks are empty



32

External Sort-Merge (Cont.)

• If N  M, several merge passes (多轮归并) are required
– In each pass, contiguous groups of M - 1 runs are merged. 

– A pass reduces the number of runs by a factor of M -1. 

• E.g. If M=11, and there are 90 runs, one pass reduces the number of 

runs to 9, each 10 times the size of the initial runs

– Repeated passes are performed till all runs have been merged into 

one



33

Example: External Sorting using Sort-Merge

Sort on the first column!

Let � denote memory buffer size

Assume:

1. Only one tuple fits in a block

2. Memory holds at most 3 blocks, 2 

for input and 1 for output

3. Cost: br ( 2 logM–1(br / M) + 1)

4. Total: 12(2*log2(12 / 3)+1) =60



34

External Merge Sort (Cont.)
• Cost analysis:

– Let br  denote the number of blocks containing records of relation r
– The initial number of runs is  br/M  
– Total number of merge passes required: logM–1(br/M).
– Disk accesses for initial run creation as well as in each pass is 2br 

(read in + write out)
• for final pass, we don’t count write cost. We ignore final write 

cost for all operations since the output of an operation may be 
sent to the parent operation without being written to disk.

– Each pass (except the final pass) reads every block once and writes 
out once. Thus total number of disk accesses for external sorting: 

• br ( 2 logM–1(br / M) + 2)- br =br ( 2 logM–1(br / M) + 1):
     Example: 12(2*log2(12 / 3)+1) =60



35

External Merge Sort (Cont.)
• Cost of seeks

– During run generation: one seek to read each run and one seek to 
write each run

•  2 br / M
– During the merge phase

• Buffer size: bb (read/write bb blocks at a time)
• Need 2 br / bb seeks for each merge pass 

– except the final one which does not require a write
• Total number of seeks:

    2 br / M + br / bb (2 log[M/bb]–1(br / M) -1)
• Applying the equation to the example, we get: 
 2*(12/3)+(12/1)(2* log2 (12 / 3)-1) =8+12*3 = 44 seeks



36

Outline

• Overview 
• Measures of Query Cost
• Selection Operation 
• Sorting 
 Join Operation 
• Other Operations
• Evaluation of Expressions



37

Join Operation
• Algorithms to implement joins

– Nested-loop join (嵌套循环连接)
– Block nested-loop join (块嵌套循环连接)
– Indexed nested-loop join (索引嵌套循环连接)
– Merge-join (归并连接)
– Hash-join (散列连接)

• Examples use the following information
– #records 

• customer: 10000  
• depositor: 5000

– #blocks 
• customer: 400     
• depositor: 100



38

Nested-Loop Join (嵌套循环连接)
• Compute the theta join �⋈��

for each tuple �� in � do begin
     for each tuple �� in � do begin

test pair (��, ��) to see if they satisfy the join condition �
          if they do, add �� ∙ �� to the result.
     end
end

• � is called the outer relation (外层关系) and � is called the inner relation (内
层关系) 

• Require no indices and can be used for any kind of join condition
• Expensive since it examines every pair of tuples in the two relations



39

Nested-Loop Join (Cont.)
• In the worst case, if there is enough memory only to hold one block of 

each relation, the estimated cost is  nr  bs + br block transfers, plus  
nr + br seeks   (�:outer relation (外层关系)  �: inner relation (内层关系) ) 

• If two or the smaller relation(s) fit(s) entirely in memory, use that as 
the inner relation.
–  Reduces cost to br  + bs block transfers and 2 seeks (best case)

• If smaller relation (depositor) fits entirely in memory, the cost estimate 
will be 500 disk accesses

• Block nested-loops algorithm is preferable #records 
customer: 10000  
depositor: 5000

#blocks 
customer: 400     
depositor: 100



40

Nested-Loop Join (Cont.)
• Given the worst case memory availability, the cost estimate is
             nr  bs + br block transfers  plus  nr + br seeks

– 5000 * 400 + 100 = 2,000,100 disk accesses with depositor as outer relation, and  
5000 + 100 = 5100 seeks 

– 10000 * 100 + 400 = 1,000,400 disk accesses with customer  as the outer relation, 
and 10,400 seeks

– 较小的关系做内层更优
– If smaller relation (depositor) fits entirely in memory, the cost estimate will be 

500 disk accesses，这时较小的关系做内层更优
#records 

customer: 10000  
depositor: 5000

#blocks 
customer: 400     
depositor: 100



41

Block Nested-Loop Join (块嵌套循环连接)
• Variant of nested-loop join in which every block of inner relation is 

paired with every block of outer relation.

    for each block �� of � do begin
        for each block �� of � do begin

for each tuple �� in �� do begin
    for each tuple �� in �� do begin
        check if (��, ��) satisfy the join condition 
        if they do, add �� ∙ �� to the result.
   end

              end
        end
    end



42

Block Nested-Loop Join (Cont.)
• Worst case estimate: br  bs + br  block transfers + 2 * br  seeks

– Each block in the inner relation s is read once for each block in the outer 
relation (instead of once for each tuple in the outer relation)

– 注：如内存不能容纳任何一个关系，则用较小的关系作为外层关系更有效

• Eg. Cost of block nested loops join
– 100*400 +100 = 40,100 block transfers + 2 * 100 =200 seeks 
– 400*100+400 =40,400 block transfers + 2 * 400 =800 seeks

• Best case(内存能容纳内层关系，较小的关系做内层): br + bs block transfers 
+ 2 seeks #records 

customer: 10000  
depositor: 5000

#blocks 
customer: 400     
depositor: 100



43

Block Nested-Loop Join (Cont.)
• Improvements to nested loop and block nested loop algorithms:

– In block nested-loop, use (M – 2) disk blocks as blocking unit for 
outer relations, where M = memory size in blocks; use remaining 
two blocks to buffer inner relation and output

•  Cost = br  / (M-2)  bs + br block transfers +
          2 br  / (M-2) seeks

– If equi-join attribute forms a key of inner relation, stop inner 
loop on first match

– Scan inner relation forward and backward alternately, to make 
use of the blocks remaining in buffer (with LRU replacement)

– Use index on inner relation if available (next slide)



44

Indexed Nested-Loop Join (索引嵌套循环连接)
• Index lookups can replace file scans if

– join is an equi-join or natural join and
– an index is available on the inner relation’s join attribute

• Can construct an index just to compute a join.
• For each tuple tr in the outer relation r, use the index to look up tuples in 

s that satisfy the join condition with tuple tr.
• Worst case:  buffer has space for only one page of r, and, for each 

tuple in r, we perform an index lookup on s.
• Cost of the join :  br (tT + tS) + nr  c

– Where c is the cost of traversing index and fetching all matching s 
tuples for one tuple of r

– c can be estimated as cost of a single selection on s using the join 
condition.

• If indices are available on join attributes of both r and s, use the 
relation with fewer tuples as the outer relation.



45

Example of Indexed Nested-Loop Join Costs
• Compute depositor ⋈ customer

– Let customer have a primary B+-tree index on the join attribute customer-name, 
which contains 20 entries in each index node

– customer has 10,000 tuples (400 blocks), the height of the tree is 4, and one more 
access to find the actual data

– depositor has 5000 tuples -> 100 blocks 
• Cost of block nested loops join

– 100*400 +100 = 40,100 block transfers + 2 * 100 =200 seeks
• assuming worst case memory(较小的关系做外层更好) 
• may be significantly less with more memory

•  Cost of indexed nested loops join
– 100 + 5000 * 5 = 25,100  block transfers and seeks.
– CPU cost likely to be less than that for block nested loops join
– 均有索引，元组较少的做外层关系较好

#records 
customer: 10000  
depositor: 5000

#blocks 
customer: 400     
depositor: 100



46

Merge-Join* (归并连接)
• Sort both relations on their join attribute 

(if not already sorted on the join 
attributes)

• Merge the sorted relations to join them
– Join step is similar to the merge stage of 

the sort-merge algorithm 
– Main difference is handling of duplicate 

values in join attribute - every pair with 
same value on join attribute must be 
matched



47

Merge-Join (Cont.)
• Can be used only for equi-joins and natural joins
• Each block needs to be read only once (assuming all tuples for any given value of the 

join attributes fit in memory)
• Thus number of block accesses for merge-join is  

     br + bs + the cost of sorting if relations are unsorted

• Hybrid merge-join (combining indices with merge-join): If one relation is sorted, 
and the other has a secondary B+-tree index on the join attribute
– Merge the sorted relation with the leaf entries of the B+-tree, the result file 

contains tuples from the sorted file and the addresses from the unsorted file 
– Sort the result file on the addresses of the unsorted relation’s tuples (why?)
– Scan the unsorted relation in physical address order and merge with previous 

result, to replace addresses by the actual tuples



48

Hash-Join* (散列连接)
• A hash function ℎ is used to partition tuples 

of both relations 
– ℎ maps JoinAttrs values to {0, 1, ..., �}
– �0, �1, . . ., �� denote partitions of � tuples
– �0, �1,. . ., �� denotes partitions of � tuples

• � tuples in �� need only to be compared with 
� tuples in ��
– an � tuple and an � tuple that satisfy the join 

condition will have the same hash value for 
the join attributes



49

Hash-Join Algorithm
• The hash-join of � and � is computed as follows

1. Partition the relation s using hashing function h.  When partitioning a relation, one block 
of memory is reserved as the output buffer for each partition.

2. Partition r similarly.
3. For each i:

(a) Load si into memory and build an in-memory hash index on it using the join attribute.  This hash 
index uses a different hash function than the earlier one h.

(b) Read the tuples in ri from the disk one by one.  For each tuple tr locate each matching tuple ts 
in si using the in-memory hash index.  Output the concatenation of their attributes.

Relation � is called the build input(构造用输入) and � is called the probe input(探查用输入)



50

Hash-Join Algorithm

• Partition both relations using 
hash function h:  r tuples in 
partition i will only match s 
tuples in partition i

• Read in a partition of s, hash 
it using h2 (≠ h!). Scan 
matching partition of r, search 
for matches

M main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hashfunction
h n

Partitions

1
2

n
. . .

Partitions
of r & s

Input buffer
For ri

Hash table for partition
si (k < M-1 pages)

M main memory buffersDisk

Output 
 buffer

Disk

Join Result

hash
fn
h2

h2



51

Hash-Join algorithm (Cont.)
• The value n and the hash function h is chosen such that each si should 

fit in memory.
– Typically n is chosen as bs/M * f  where f is a “fudge factor”(避让因子), 

typically around 1.2
– The probe relation partitions ri need not fit in memory

• Recursive partitioning required if number of partitions n is greater than 
number of pages M of memory.
– instead of partitioning n ways, use  M – 1 partitions for s
– Further partition the M – 1 partitions using a different hash function
– Use same partitioning method on r



52

Handling of Overflows
• Hash-table overflow occurs in partition si if si does not fit in memory.  Reasons 

could be
– Many tuples in s with same value for join attributes
– Bad hash function

• Overflow resolution(溢出消解) can be done in build phase
– Partition si is further partitioned using different hash function. 
– Partition ri must be similarly partitioned.

• Overflow avoidance(溢出避免) performs partitioning carefully to avoid overflows 
during build phase
– E.g. partition build relation into many partitions, then combine them

• Both approaches fail with large numbers of duplicates(大量元组链接属性相同)
– Fallback option: use block nested loops join on overflowed partitions



53

Cost of Hash-Join
• If recursive partitioning is not required: cost of hash join is

               2(br + bs) +(br + bs) + 4n
• If recursive partitioning required, number of passes required for partitioning 

s is logM–1(bs) – 1.  
• the number of passes for partitioning of r  is also the same as for s.  
• Therefore it is best to choose the smaller relation as the build relation.
• Total cost estimate is: 

2(br + bs)  logM–1(bs) – 1 + br + bs

• If the entire build input can be kept in main memory, n can be set to 0 and 
the algorithm does not partition the relations into temporary files.  Cost 
estimate goes down to br + bs.



54

Example of Cost of Hash-Join

• Assume that memory size is 20 blocks
• bdepositor= 100 and bcustomer = 400.
• depositor is to be used as build input.  Partition it into 5 partitions, 

each of size 20 blocks.  This partitioning can be done in 1 pass.
• Similarly, partition customer into 5 partitions, each of size 80. This 

is also done in 1 pass

• Therefore total cost:  3(100 + 400) = 1500 block transfers 
– ignores cost of writing partially filled blocks (4*20=80 block transfers)

customer ⋈ depositor



55

Hybrid Hash–Join
• Useful when memory size are relatively large, and the build input is 

bigger than memory.
• Main feature of hybrid hash join: Keep the first partition of the 

build relation in memory. 
• E.g. With memory size of 25 blocks, depositor can be partitioned 

into 5 partitions, each of size 20 blocks.
• Division of memory:

– The first partition occupies 20 blocks of memory（无需递归划分）
– 1 block is used for input, and 1 block each for buffering the other 4 

partitions.



56

Hybrid Hash–Join
• customer is similarly partitioned into 5 partitions each of size 80; 

the first is used right away for probing, instead of being written 
out and read back.

• Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for hybrid 
hash join, instead of 1500 with plain hash-join.

• Hybrid hash-join most useful if � ≫ �� 



57

Complex Joins
• Join with a conjunctive condition(合取): �⋈��∧��∧…∧���

– Either use nested loops/block nested loops, or
– Compute the result of one of the simpler joins �⋈���
– final result comprises those tuples in the intermediate result that 

satisfy the remaining conditions �1 ∧ … ∧ ��−1 ∧ ��+1 ∧ … ∧ ��

• Join with a disjunctive condition(析取): �⋈��∨��∨…∨���
– Either use nested loops/block nested loops, or
– Compute as the union of the records in individual joins �⋈���:

 �⋈�1� ∪  �⋈�2� ⋯ ∪ (�⋈��� 



58

Complex Joins
• Join involving three relations:  loan ⋈ depositor ⋈ customer

– Strategy 1: Compute depositor ⋈ customer; use result to compute loan ⋈    
(depositor ⋈ customer)

– Strategy 2: Computer loan ⋈ depositor first, and then join the result 
with customer.

– Strategy 3: Perform the pair of joins at once. Build an index on loan for 
loan-number, and on customer for customer-name.

• For each tuple � in depositor, look up the corresponding tuples in customer 
and the corresponding tuples in loan.

• Each tuple of depositor is examined exactly once
• Strategy 3 combines two operations into one special-purpose operation that 

is more efficient than implementing two joins of two relations.



59

Outline

• Overview 
• Measures of Query Cost
• Selection Operation 
• Sorting 
• Join Operation 
 Other Operations
• Evaluation of Expressions



60

Duplicate Elimination & Projection 
• Duplicate elimination can be implemented via hashing or sorting

– On sorting duplicates will come adjacent to each other, and all but one 
copy of duplicates can be deleted. 

– Optimization: duplicates can be deleted during run generation as well as 
at intermediate merge steps in external sort-merge

– Hashing is similar – duplicates will come into the same bucket
• Projection is implemented by performing projection on each tuple 

followed by duplicate elimination



61

Aggregation
• Aggregation can be implemented in a manner similar to duplicate 

elimination
– Sorting or hashing can be used to bring tuples in the same group 

together, and then the aggregate functions can be applied on each group
– Optimization: combine tuples in the same group during run generation and 

intermediate merges, by computing partial aggregate values
• For count, min, max, sum: keep aggregate values on tuples found so far in the 

group.  
• For avg, keep sum and count, and divide sum by count at the end



62

Set Operations
• Set operations (∪, ∩ and −):  can either use variant of merge-

join after sorting, or variant of hash-join
• E.g., set operations using hashing

– Partition both relations using the same hash function, thereby 
creating, �1, …, �� and �1, �2,…, �� 

– Process each partition � as follows. Using a different hashing function 
to build an in-memory hash index on �� after it is brought into memory

• � ∪ �:  add tuples in �� to the hash index if they are not already in it. 
Finally, add the tuples in the hash index to the result

• � ∩ �: output tuples in �� to the result if they are already there in the hash 
index

• � − �: for each tuple in ��, if it is in the hash index, delete it from the 
index. Finally, add the remaining tuples in the hash index to the result



63

Outer Join
• Outer join can be computed either as 

– A join followed by addition of null-padded non-participating tuples
– by modifying the join algorithms

• Modifying merge join to compute �       �
– In �         �, non participating tuples are those in � − Π�(� ⋈ � 
– Modify merge-join to compute �         �:  During merging, for every tuple �� from � 

that do not match any tuple in �, output �� padded with nulls
– Right outer-join and full outer-join can be computed similarly



64

Outline

• Overview 
• Measures of Query Cost
• Selection Operation 
• Sorting 
• Join Operation 
• Other Operations
 Evaluation of Expressions



65

Evaluation of Expressions
• We have seen algorithms for individual operations

• Alternatives for evaluating an entire expression tree
– Materialization (物化): generate the results of an expression whose 

inputs are relations or are already computed, materialize (store) it on 
disk

– Pipelining (流水线):  pass on tuples to parent operations even as an 
operation is being executed



66

Materialization (物化)
• Materialized evaluation (物化计算) : evaluate one operation at a 

time, starting at the lowest-level.  
• E.g., for the figure below, compute and store

��������<2500(������� 
• then compute and store the previous result’ join with customer, and 

finally compute the projections on customer-name. 



67

Materialization (Cont.)
• Materialized evaluation (物化计算) is always applicable
• Cost of writing results to disk and reading them back can be quite high

– overall cost  =  sum of costs of individual operations + cost of writing 
intermediate results to disk

• Double buffering (双缓冲): use two output buffers for each operation, 
when one is full write it to disk while the other is getting filled
– Reduce the execution time



68

Pipelining (流水线)
• Pipelined evaluation (流水线计算):  evaluate several operations 

simultaneously, passing the results of one operation to the next
• E.g., in previous expression tree, don’t store the result of 

��������<2500(������� 
– instead, pass tuples directly to the join. Similarly, don’t store result of 

join, pass tuples directly to projection
• Much cheaper than materialization
• Pipelining may not always be possible – e.g., sort, hash-join
• Pipelines can be executed in two ways:  

– demand driven (需求驱动) and producer driven (生产者驱动)



69

Pipelining (Cont.)
• demand driven or lazy evaluation

– System repeatedly requests next tuple from top level operation
– Each operation requests next tuple from children operations as required, in order 

to output its next tuple
– Between calls, operation has to maintain “state” so it knows what to return next
– Each operation is implemented as an iterator implementing the following 

operations
• open()

– E.g. file scan: initialize file scan, store pointer to beginning of file as state
– E.g.merge join: sort relations and store pointers to beginning of sorted relations as state

• next()
– E.g. for file scan: Output next tuple, and advance and store file pointer
– E.g. for merge join: continue with merge from earlier state till next output tuple is found. Save 

pointers as iterator state.
• close()



70

Pipelining (Cont.)
• producer-driven or eager pipelining

– Operators produce tuples eagerly and pass them up to their parents
• Buffer maintained between operators, child puts tuples in buffer, parent 

removes tuples from buffer
• if buffer is full, child waits till there is space in the buffer, and then 

generates more tuples

– System schedule operations that have space in output buffer and can 
process more input tuples



71

Assignments
• Practice exercises: 15.3, 15.6
• Exercises: 15.17

• Submission DDL: 12:59pm, May 14



72

End of Lecture 9


