Introduction to Databases

KBRS

Lecture 10: Query Processing

HB103F: FEighb
EKBE / Shuigeng Zhou

BRfk: sgzhou@fudan.edu.cn P#k: admis.fudan.edu.cn/sgzhou

-

H BRFEVHEIRH LR ERE

Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 8 (:A&pr'. 17) - Ch12/13: Storage
. tems & structures
Part 1 Relational Databases 5YS , .
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 9 (Apr. 24) - Chl4: Indexing
(data model, relational algebra) - Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
- Lect. 4 (Mar. 13) - Ch4 & 5: Intermediate & - Lect. 10 (May 8) - Ch15: Query processing
Advanced SQL - Lect. 11 (May 15) - Ch16: Query
Part 2 Database Design opfimization
Lect. 5 (Mar. 20) - Ché: Database design . qut 5 Transaction Management
based on E-R model Lect. 12 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database _
design (Part T) lgsﬂrgf (May 29) - Ch18: Concurrency
- .7 (Apr. 3) - Ch7: Relational datab
lazgzrgz ((PGE.'; II)) h7: Relational database - Lect. 14 (Jun. 5) - Ch19: Recovery system

Midterm exam: Apr. 10 - Lect. 15 (Jun. B) - Course review

Final exam: 13:00-15:00, Jun. 18

(terllférvse :;:;is application sopl:::rcsated database
web users) programmers (anlysis) administrators Users
use ‘write use use

licati licatis dministrati H H
ChieasD CimD D g Applications/tools

A A e
i - !
D b i //‘ com]l_:ulier e |—> DML queries I |DDL interpreter i
i |
atabase | &G i :
! program DML compiler |
SY s * e m ! object code and organizer !
I I

i query evaluation J i DBMS
Structure | e query processor |
: I
E buffer manager | | file manager I authorization transaction E
i and integrity manager !
! manager !
i
i I
i i
i I
1 I
i / storage manager E
L N T e - 1

——
—
disk storage Database
indices | I data dictionary |

data statistical data

@ QOverview

* Measures of Query Cost
- Selection Operation

» Sorting

- Join Operation

* Other Operations

» Evaluation of Expressions

Basic Steps in Query Processing

relational-algebra
expression

parser and
translator

query |
SQL query

query

output evaluation engine

<— execution plan

1. Parsing and translation
2. Optimization

3. Evaluation data statistics
about data

Basic Steps in Query Processing

Parsing and translation

- translate the query into the internal form which is then translated into
relational algebra

Optimization
- Generate the optimal execution plan (H4Tit%)
Execution

- The query execution engine executes the evaluation plan, and returns
the answers to the query

Query Optimization

select salary

e oo < 75000 PAHXIMARRAHFIA

Query Optimization

A relational algebra expression may have many equivalent expressions

Annotated expression specifying detailed execution strategy is called
an execution-plan
- can use an index on instructor to find instructors with salary < 75000, or

- perform complete relation scan and discard instructors with salary =
75000

Query Optimization (Cont.)

* Query Optimization
- Amongst all equivalent evaluation plans, choose the one with lowest cost
- Cost is estimated using statistical information from the database catalog
* This lecture
- How to measure query costs
- Algorithms for evaluating relational algebra operations

- Combine algorithms for individual operations to evaluate a complete
expression

- Next lecture
- The way to find an execution plan with the lowest estimated cost

+ Overview

@ Measures of Query Cost
- Selection Operation

» Sorting

- Join Operation

* Other Operations

» Evaluation of Expressions

10

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
- disk accesses, CPU, and even network communication
- Typically disk access is the predominant cost, and is also relatively
easy to be estimated
- Disk access is measured by taking into account
- Number of seeks
- Number of blocks read
- Number of blocks written

+ The cost to write a block is greater than the cost to read a block
* Data is read back after being written to ensure that the write was successful

11

Measures of Query Cost (Cont.)

For simplicity, use the number of block transfers from disk and
the number of seeks as the cost measure

Cost for block transfers plus seeks
-
— - time to transfer one block, =0.1ms
- - time for one seek, =4ms
Cost also depends on the size of the buffer in main memory
- Large buffer reduces the need for disk access

- Often use worst case estimates, assuming only the minimum amount of
buffer storage is available

12

+ Overview

* Measures of Query Cost
@ Selection Operation

» Sorting

- Join Operation

* Other Operations

» Evaluation of Expressions

13

Selection Operation

File scan (3Z{4334#)

- Search algorithms that locate and retrieve records that satisfy a

selection condition

Index scan (ZZ35|13})

- Search algorithms that use an index

- Selection condition must be on search-key of an index

14

Selection Operation

Algorithm A1 (linear search, ZelHEZR)
- Cost estimate = block transfers + 1 seek (HilR: NIHRIFFEER)
* b, denotes number of blocks containing records from relation r

- If selectionis on a key attribute, can stop on finding record
- average cost = (b,./2) block transfers + 1 seek

- Linear search can be applied regardless of
- selection condition or
» ordering of records in the file, or
» availability of indices

15

Selection Operation (Cont.)

A1’ (binary search).

- Applicable if selection is an equality comparison on the attribute on
which file is ordered.

- Assume that the blocks of a relation are stored contiguously
- Cost estimate (number of disk blocks to be scanned):
+ cost of locating the first tuple by a binary search on the blocks
- worst cost [log,(b.)] * (tr + ts)
* If there are multiple records satisfying selection

- Add transfer cost of the number of blocks containing
records that satisfy selection condition

16

Selections Using Indices

- A2 (primary index on candidate key, equality)
- Reftrieve a single record that satisfies the corresponding equality condition

- Cost=(+1)*(+) (B+-tree)

- A3 (primary index on non-key, equality) Retrieve multiple records

- Records will be on consecutive blocks
- Let = number of blocks containing matching records

- Cost = (+)+ +
is the height of the
index, i.e., the number of
levels of the trees. =1
® 7y .
B+ tree means that there is only
LX) () the root node

17

Selections Using Indices (Cont.)

A4 (equality on search-key of secondary index).

- Retrieve a single record if the search-key is a candidate key
+Cost=(+1)*(+)

- Retrieve multiple records if search-key is not a candidate key
- Assume that records satisfy the search condition
Cost= (+)(+)

- Can be very expensivel!
* Each record may be on a different block

- one block access for each retrieved record
18

Selections Involving Comparisons

Implement selections of the form _ (or . (by
- using a linear file scan or binary search, or
- using indices in the following ways:

A5 (primary index, comparison).
- Relation is sorted on A

- For o4 > (r) use index to find first fuple > v and scan relation
sequentially from there

- For o4y (r) just scan relation sequentially till first fuple > v; do not use
index

19

Selections Involving Comparisons (Cont.)

A6 (secondary index, comparison).

- For o4.y(r) use index to find first index entry > vand scan
index sequentially from there, to find pointers to records.

- For o, (r) just scan leaf pages of index finding pointers to
records, till first entry > v

- Ineither case, retrieve records that are pointed to
* requires an I/0 for each record

» Linear file scan may be cheaper if many records are
to be fetched!

20

Selection Operation Cost Estimation

N F R B
AL | e L, +b, ety BHIGIR L b, 1-RAEW, b, Tt X0 RR
N | AR B | W ENRE FiCREERIE, FoAERBFROICR, 110
S E L (b/2) et | BRTERIE, GERIRMIIE T, (IR b, AN |
o | BRERS, @R | (D) (et b, JRRIGHI) . K| ERFRAGES, B
PR 2 (1 +1,) K 1/0 KHLES: LR 1/0 MIEME KRR KR
N . REICRORE, BRS8N R %3 90
' ' Y AATHEBIMERK
B WMBIRS|, 7 | (h+1) b e
g | S TR s SR 5 .
IR (0 (1, +1,) X icR— , MR n it
' K, ROATESENR -
A5 | ommEgdl, e | ()T | R, RS
B W MBI &3l | (h+n)s

A6

H

A4, JERSRMEFALLENE B

21

Selection Operation Cost Estimation

Algorithm Cost Reason
Al | Linear Search ts+ b, *tr One initial seek plus b, block transfers,
where b, denotes the number of blocks in

the file.

A1l | Linear Search, Average case Since at most one record satisfies the con-
Equality on Key | t5+(b,/2) = #; | dition, scan can be terminated as soon as

the required record is found. In the worst
case, b, block transfers are still required.

A2 | Clustering (h,+ 1) =% (Where #; denotes the height of the in-
Bt-tree Index, (tr +t5) dex.) Index lookup traverses the height of
Equality on Key the tree plus one I/O to fetch the record;

each of these I/O operations requires a
seek and a block transfer.

A3 | Clustering h; = (i +1g)+ [One seek for each level of the tree, one
B*-tree Index, ts+bxty seek for the first block. Here b is the num-
Equality on ber of blocks containing records with the
Non-key specified search key, all of which are read.

These blocks are leaf blocks assumed to be
stored sequentially (since it is a clustering
index) and don’t require additional seeks.

A4 | Secondary (h,+ 1) % This case is similar to clustering index.
Bt-tree Index, (tr +t5)

Equality on Key

A4 | Secondary (h; +n) * (Where n is the number of records
B*-tree Index, (7 +15) fetched.) Here, cost of index traversal is
Equality on the same as for A3, but each record may
Non-key be on a different block, requiring a seek

per record. Cost is potentially very high if
7 is large.

A5 | Clustering h; % (tr +1g) + [Identical to the case of A3, equality on
B*-tree Index, ts+bxty non-key.

Comparison

A6 | Secondary (h,+n) = Identical to the case of A4, equality on
B*-tree Index, (tr +15) non-key.

Comparison

22

Implementation of Complex Selections

Conjunction (&EY): (

A7 (conjunctive selection using one index)

- Select a condition of and algorithms A1 through A6 that results in the least
cost for (

- Test other conditions on the tuples after fetching them into memory buffer

A8 (conjunctive selection using multiple-key index)

- Use appropriate composite (multiple-key) index if available

A9 (conjunctive selection by intersection of identifiers)
- Requires indices with record pointers

- Use corresponding index for each condition, and take intersection of all
the obtained sets of record pointers

- Then fetch records from file

23

Implementation of Complex Selections (Cont.)

Disjunction (tfrHY): (
A10 (disjunctive selection by union of identifiers).
- Applicable if all conditions have available indices
* Otherwise use linear scan

- Use the corresponding index for each condition, and take union of all the
obtained sets of record pointers.

- Then fetch records from file

Negation (BIR): - (
- Use linear scan on file
- If very few records satisfy —0, and an index is applicable to 6
» Find satisfying records using index and fetch from file

24

- Overview

* Measures of Query Cost
- Selection Operation

& Sorting

» Join Operation

* Other Operations

» Evaluation of Expressions

25

We can build an index on the relation, and then use the index to read
the relation in sorted order.

- May lead to one disk block access for each tuple (for non-primary indices)
Relations that fit in memory

- Techniques like quick-sort (1R1EHER) can be used
Relations that don't fit in memory

- External sort-merge (7MEPHERRYIFF) is a good choice

26

HEFP TS PR B 2%

- A EEH. B PuEHiE. B IR
Py BRI ZXWHIE WS W EEGER .
© AEE
- ®¥HHF (selection sort) : O(n2)

- PuEHEF (quicksort) : O(nlogn) *E¥BfiE], O(n?) HIMFHL XFF R
v AU BB R P e A HEF

- HiHE® (heapsort) : O(nlogn)
- &Hi/RHEF (shell sort) : O(nlogn)

- ﬁ)ﬁiﬁﬂ%‘ (radix sort) : O(n-k), T O(n) BIMEMEZ T (KARFEA

27

HEFP TS PR B 2%

- WA R SR PUEHER R BIEHE
s AR ZXOWHER B W RS
© TRE
- AN (insertion sort) : O(n2)
- Hi#tde® (bubble sort) : O(n2)
- H3tHEF (merge sort) : O(n log n). FE O(n) i 7# 25 10
- “XUWHEF (Binary tree sort) : O(nlogn) TE O(n) BHMEE]

- WHHEF (counting sort) : O(n+k). FE O(n+K) BHMEME M, KA
A Max-Min+1

- fHEy (bucket sort) : O(n): F%E O(k) BAMFfiff =2]

28

External Sort-Merge (YMEPHEREITFF)

* Relations that don't fit in memory Assume:

+ Let denote memory buffer size (in blocks) }- 32xoi';eh‘;‘;g'sea’;‘*:‘;;‘t°3bt')‘;§:ks ,

. Crtea-'-e sorl-red runs (ﬁ“@l}a#ﬁi) for input and 1 for output
let = initially 2 19 210 -
. . . 24

repeatedly do the following till the end of the relation: =15 g - 1 b ; i

. . C
read M blocks of relation into memory EH Il J e b4
sort the in-memory blocks = e |16 1%
write sorted data to run e Sl [a[=
increment 5 1; : 2; af : f;
let the final value of = (N-way merge) = I 161 I 52
pl 2 m| 3
INPUT 1 d| 7 a 14j m Z’ pl 2

P
INPUT 2 _\N:] il 2 Z r |16 L
. . e s initial sorted

— relation runs runs
INPUT M / " create merge merge S
M Main memory buffers Disk e pass=1 pass -2

External Sort-Merge

Make runs

Merge

> | JINPUT I
U .\
[INUT 2 |—
O A /
7 [T INPUT M
Disk M Main memory buffers
>y | _JINPUTI
I
> INPUT 2
= o
[] [] [] /
" [|TTSINPUT M-1
Disk

M Main memory buffers

Disk

30

External Sort-Merge (cont.)

Merge the runs (N-way merge, NigJ3F). We assume N < M

Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read
the first block of each run into its buffer page

repeat

select the first record (in sort order) among all buffer blocks

write the record to the output buffer block. If the output buffer is
full, write it to disk

delete the record from the input buffer block
If the buffer block becomes empty then

read the next block of the run into the buffer

until all input buffer blocks are empty @ _fowrd E
e e e Ih.IPU.T .2 S-OUTPUT ——
[TINPUT M-1

Disk M Main memory buffers Disk

31

External Sort-Merge (Cont.)

- If N > M, several merge passes (£#/97f) are required

- In each pass, contiguous groups of M - 1 runs are merged.

- A pass reduces the number of runs by a factor of M -1.

+ E.g. If M=11, and there are 90 runs, one pass reduces the number of

runs to 9, each 10 times the size of the initial runs

- Repeated passes are performed till all runs have been merged into

one

32

Example: External Sorting using Sort-Merge

2 |k a|19
Sort on the first column! g\[24 d |31 b |14 a|l4
a |24 g |24 = 33 al|19
Let denote memory buffer size d/[31 - o b |14
14
33
Assume: _ |33 j e |16 AL
b |14 = al 7
1. Only one tuple fits in a block e /|16 e 16 Jd|21
16 a3
2. Memory holds at most 3 blocks, 2 d a2l a |14
for input and 1 for output 3 —z 1 it g |24
/15& 2 - m| 3
3. Cost: b, (2 [logyi(b./ M) + 1) al 7 a |14 j s p| 2
2
14 d| 7 P 16
4. Total: 12(2*log,(12 / 3)+1) =60 \a// -T2 r [16 d
initial sorted
relation runs runs output
create merge merge
runs pass—1 pass—2

33

External Merge Sort (Cont.)

Cost analysis:

- Let b, denote the number of blocks containing records of relation r
- The initial number of runs is|[b/M |

- Total number of merge passes required: [logy. ;(b/M)].

- Disk accesses for initial run creation as well as in each pass is 2b,
(read in + write out)

- for final pass, we don't count write cost. We ignore final write
cost for all operations since the output of an operation may be
sent to the parent operation without being written to disk.

- Each pass (except the final pass) reads every block once and writes
out once. Thus total number of disk accesses for external sorting:

« b.(2[logy1(b./ M)] + 2)- b, =b, (2 [logy1(b./ M)] + 1):

Example: 12(2*log,(12 / 3)+1) =60
34

External Merge Sort (Cont.)

Cost of seeks
- During run generation: one seek to read each run and one seek to
write each run
2(b./ Ml
- During the merge phase
- Buffer size: b, (read/write b, blocks at a time)
* Need 2 [b,/ b,| seeks for each merge pass
- except the final one which does not require a write

- Total number of seeks:
2[b,./ M1 +Tb,./ b, (2 [logiymy1(b, / M)] -1)

- Applying the equation to the example, we get:
2*(12/3)+(12/1)(2* log, (12 / 3)-1) =8+12*3 = 44 seeks

35

- Overview

* Measures of Query Cost
- Selection Operation

- Sorting

@ Join Operation

* Other Operations

» Evaluation of Expressions

36

Algorithms to implement joins
- Nested-loop join (BREMEIMERE)
Block nested-loop join (RERETEINE)
Indexed nested-loop join (FES|IERETEINER)
Merge- join (JAFEE)
Hash- join (B%7i%EE)
Examples use the following information
- #records

- customer: 10000

* depositor: 5000
- #blocks

+ customer: 400
- depositor: 100

37

Nested-Loop Join (BREBINER)

Compute the theta join

for each tuple in do begin
for each tuple in do begin
test pair (,) to see if they satisfy the join condition
if they do,add - to the result.
end
end

° is called the outer relation (9FE%ZE) and s called the inner relation (A
BXR)

Require no indices and can be used for any kind of join condition
Expensive since it examines every pair of tuples in the two relations

38

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of
each relation, the estimated cost is n. * b, + b, block transfers, plus
n. + b, seeks (:outer relation (JPEXZE) : inner relation (HBXR))

If two or the smaller relation(s) fit(s) entirely in memory, use that as
the inner relation.

- Reduces cost to b, + b, block transfers and 2 seeks (best case)

If smaller relation (depositor) fits entirely in memory, the cost estimate
will be 500 disk accesses

ed-loops algorithm is preferable #records
Block nest P goriThm Pr fera customer: 10000

depositor: 5000
#blocks
customer: 400

depositor: 100
39

Nested-Loop Join (Cont.)

Given the worst case memory availability, the cost estimate is
n. * b + b, block transfers plus n. + b, seeks

- 5000 * 400 + 100 = 2,000,100 disk accesses with depositor as outer relation, and
5000 + 100 = 5100 seeks

- 10000 * 100 + 400 = 1,000,400 disk accesses with customer as the outer relation,
and 10,400 seeks

- BPHXRMAEER

- If smaller relation (depositor) fits entirely in memory, the cost estimate will be
500 disk accesses, XBIR/NIKREMANEEN

#Hrecords
customer: 10000
depositor: 5000
#blocks
customer: 400
depositor: 100 40

Block Nested-Loop Join (IREXEMEIERE)

Variant of nested-loop join in which every block of inner relation is
paired with every block of outer relation.

for each block of do begin
for each block of do begin
for do begin
for do begin
check if (,)satisfy the join condition
if they do, add - to the result.
end
end
end
end

41

Block Nested-Loop Join (Cont.)

Worst case estimate: b, * b, + b, block transfers + 2 * b, seeks

- Each block in the inner relation s is read once for each block in the outer
relation (instead of once for each tuple in the outer relation)

- VE: WAFEAREPUEM—PRER, MABRPMIKRIEASIERRERN
Eg. Cost of block nested loops join

- 100*400 +100 = 40,100 block transfers + 2 * 100 =200 seeks

- 400*100+400 =40,400 block transfers + 2 * 400 =800 seeks
Best case(WHEBEBEPINERR, B/IHIRAZMAE): b, + b, block transfers

+ 2 seeks #records

customer: 10000
depositor: 5000
#blocks
customer: 400
depositor: 100 42

Block Nested-Loop Join (Cont.)

Improvements to nested loop and block nested loop algorithms:

- In block nested-loop, use (M - 2) disk blocks as blocking unit for
outer relations, where M = memory size in blocks; use remaining
two blocks to buffer inner relation and output

. Cost =|b,/(M-2)] = b, + b, block transfers +
21b,. / (M-2)] seeks

- If equi-join attribute forms a key of inner relation, stop inner
loop on first match

- Scan inner relation forward and backward alternately, to make
use of the blocks remaining in buffer (with LRU replacement)

- Use index on inner relation if available (next slide)

43

Indexed Nested-Loop Join (Z=5|EREMRIFIESRE)

Index lookups can replace file scans if
- join is an equi-join or natural join and
- an index is available on the inner relation’s join attribute
- Can construct an index just to compute a join.
For each tuple t. in the outer relation r, use the index to look up tuples in
s that satisfy the join condition with tuple t..
Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.
Cost of the join : b, (tr+ ts) + n. * ¢
- Where c is the cost of traversing index and fetching all matching s
tuples for one tuple of r
- ¢ can be estimated as cost of a single selection on s using the join
condition.
If indices are available on join attributes of both r and s, use the

relation with fewer tuples as the outer relation.
44

Example of Indexed Nested-Loop Join Costs

Compute depositor customer

- Let customer have a primary B*-tree index on the join attribute customer-name,
which contains 20 entries in each index node
- customer has 10,000 tuples (400 blocks), the height of the tree is 4, and one more
access to find the actual data
- depositor has 5000 tuples -> 100 blocks
Cost of block nested loops join

- 100*400 +100 = 40,100 block transfers + 2 * 100 =200 seeks

#records
customer: 10000

- assuming worst case memory(B/MAIRRMBINEFEIF) depositor: 5000
* may be significantly less with more memory #blocks
Cost of indexed nested loops join customer: 400
- 100 + 5000 * 5 = 25,100 block transfers and seeks.

depositor: 100
- CPU cost likely to be less than that for block nested loops join Pos!

- WHERI, méﬁﬁ//" K SNER R BT

45

Merge-Join* (I3 &)

Sort both relations on their join attribute

(if not already sorted on the join L2 A
attributes) —>»a |3 —»a A
Merge the sorted relations to join them Z ; E f
- Join step is similar to the merge stage of d |13 d [N
the sort-merge algorithm £ |7 m|B
- Main difference is handling of duplicate m| S s
values in join attribute - every pair with gl

same value on join attribute must be r
matched

46

Merge-Join (Cont.)

Can be used only for equi- joins and natural joins

Each block needs to be read only once (assuming all fuples for any given value of the
join attributes fit in memory)

Thus number of block accesses for merge- join is
b. + b, + the cost of sorting if relations are unsorted

Hybrid merge- join (combining indices with merge- join): If one relation is sorted,
and the other has a secondary B*-tree index on the join attribute

- Merge the sorted relation with the leaf entries of the B*-tree, the result file
contains tuples from the sorted file and the addresses from the unsorted file

- Sort the result file on the addresses of the unsorted relation's tuples (why?)

- Scan the unsorted relation in physical address order and merge with previous
result, to replace addresses by the actual tuples

47

Hash-Join* (BY%1:Z%E#)

A hash function
of both relations

maps JoinAttrs values t0 {0, 1, ..., }

is used to partition tuples

Y

denote partitions of tuples

Y

0. 1...., denotes partitions of tuples

Y

tuples in need only to be compared with

tuples in

- an tuple and an tuple that satisfy the join
condition will have the same hash value for
the join attributes

partitions
of s

Hash-Join Algorithm

The hash-join of and is computed as follows
1. Partition the relation s using hashing function h. When partitioning a relation, one block
of memory is reserved as the output buffer for each partition.
2. Partition r similarly.

3. For each i:

(a) Load s; into memory and build an in-memory hash index on it using the join attribute. This hash
index uses a different hash function than the earlier one h.

(b) Read the tuples in r; from the disk one by one. For each tuple t. locate each matching tuple t;
in s; using the in-memory hash index. Output the concatenation of their attributes.

Relation is called the build input(#i&fH%iA) and is called the probe input(REH%HIN)

49

Hash-Join Algorithm

Partition both relations using
hash function h: r tuples in
partition i will only match s
tuples in partition i

Read in a partition of s, hash
it using h2 (# h!). Scan
matching partition of r, search
for matches

Origina
Relatior] OUTPUT| Partitions
[] t’ (I |1
INPUT
|:| > Dfuﬁ%ﬁon oo Dl:”:l 2
[J [] [J h n M
L]] n

Disk M main memory buffers Disk

Partitions Join Result
ofr&s Hash table for partitfon

—
’tﬂSh , < M- es)]
I:":l } ‘n? D E] 000 .
= .
o0 0 > hz - L 2K 2K
Lo O i Al -l el
Disk M main memory bufferBisk

50

Hash-Join algorithm (Cont.)

The value n and the hash function h is chosen such that each s; should
fit in memory.

- Typically nis chosen as [by/M|* f where f is a "fudge factor" (il [KF),
typically around 1.2

- The probe relation partitions r; need not fit in memory

Recursive partitioning required if number of partitions n is greater than
number of pages M of memory.

- instead of partitioning n ways, use M -1 partitions for s

- Further partition the M -1 partitions using a different hash function
- Use same partitioning method on r

51

Handling of Overflows

Hash-table overflow occurs in partition s; if s; does not fit in memory. Reasons
could be

- Many tuples in s with same value for join attributes

- Bad hash function
Overflow resolution(iiHiiEf#) can be done in build phase

- Partition s;is further partitioned using different hash function.

- Partition r; must be similarly partitioned.
Overflow avoidance(#%i H#4:) performs partitioning carefully to avoid overflows
during build phase

- E.g. partition build relation into many partitions, then combine them
Both approaches fail with large numbers of duplicates(XE/BiEEREIEHER)

- Fallback option: use block nested loops join on overflowed partitions

52

Cost of Hash-Join

If recursive partitioning is not required: cost of hash join is
2(b, + bs) +(b. + b) + 4n

If recursive partitioning required, number of passes required for partitioning
sis|logy(b) - 11.
the number of passes for partitioning of r is also the same as for s.
Therefore it is best to choose the smaller relation as the build relation.
Total cost estimate is:

2(b, + by) [logy1(bs) - 11+ b, + b,
If the entire build input can be kept in main memory, n can be set to O and

the algorithm does not partition the relations into tfemporary files. Cost
estimate goes down to b, + b..

53

Example of Cost of Hash-Join

customer depositor

Assume that memory size is 20 blocks
|Ddeposi‘ror‘: 100 and IDcus‘romer' = 400.

depositor is to be used as build input. Partition it into 5 partitions,
each of size 20 blocks. This partitioning can be done in 1 pass.

Similarly, partition customer into 5 partitions, each of size 80. This
is also done in 1 pass

Therefore total cost: 3(100 + 400) = 1500 block transfers
- ignores cost of writing partially filled blocks (4*20=80 block transfers)

54

Hybrid Hash-Join

Useful when memory size are relatively large, and the build input is
bigger than memory.

Main feature of hybrid hash join: Keep the first partition of the
build relation in memory.

E.g. With memory size of 25 blocks, depositor can be partitioned
into 5 partitions, each of size 20 blocks.

Division of memory:

- The first partition occupies 20 blocks of memory (FoFHEiEIT4I%)

- 1block is used for input, and 1 block each for buffering the other 4
partitions.

55

Hybrid Hash-Join

customer is similarly partitioned into 5 partitions each of size 80;
the first is used right away for probing, instead of being written
out and read back.

Cost of 3(80 + 320) + 20 +80 = 1300 block ftransfers for hybrid
hash join, instead of 1500 with plain hash-join.

Hybrid hash-join most useful if J

56

Complex Joins

Join with a conjunctive condition(FEX):

- Either use nested loops/block nested loops, or
- Compute the result of one of the simpler joins

- final result comprises those tuples in the intermediate result that
satisfy the remaining conditions | .. _; 41

Join with a disjunctive condition(ffTEY):
- Either use nested loops/block nested loops, or
- Compute as the union of the records in individual joins

1 2 (

57

Complex Joins

Join involving three relations: loan depositor customer

- Strategy 1. Compute depositor customer; use result to compute loan
(depositor customer)

- Strategy 2: Computer loan depositor first, and then join the result
with customer.

- Strategy 3: Perform the pair of joins at once. Build an index on loan for
loan-number, and on customer for customer-name.

* For each tuple in depositor, look up the corresponding tuples in customer
and the corresponding tuples in loan.

* Each tuple of depositor is examined exactly once

- Strategy 3 combines two operations into one special-purpose operation that
is more efficient than implementing two joins of two relations.

58

- Overview

* Measures of Query Cost
- Selection Operation

- Sorting

» Join Operation

@ Other Operations

» Evaluation of Expressions

59

Duplicate Elimination & Projection

Duplicate elimination can be implemented via hashing or sorting

- On sorting duplicates will come adjacent to each other, and all but one
copy of duplicates can be deleted.

- Optimization: duplicates can be deleted during run generation as well as
at intermediate merge steps in external sort-merge

- Hashing is similar - duplicates will come into the same bucket

Projection is implemented by performing projection on each tuple
followed by duplicate elimination

60

Aggregation

Aggregation can be implemented in a manner similar to duplicate
elimination
- Sorting or hashing can be used to bring tuples in the same group
together, and then the aggregate functions can be applied on each group
- Optimization: combine tuples in the same group during run generation and
intermediate merges, by computing partial aggregate values

* For count, min, max, sum: keep aggregate values on tuples found so far in the
group.
* For avg, keep sum and count, and divide sum by count at the end

61

Set Operations

Set operations (, n and —): can either use variant of merge-
join after sorting, or variant of hash- join

E.g., set operations using hashing

- Partition both relations using the same hash function, thereby
creating, 1,.., and 1, 5,..,

- Process each partition as follows. Using a different hashing function
to build an in-memory hash index on after it is brought info memory

. : add tuplesin to the hash index if they are not already in it.
Finally, add the tuples in the hash index to the result

e n : oufput tuplesin to the result if they are already there in the hash
index

e — : foreach tuplein ,if it isin the hash index, delete it from the
index. Finally, add the remaining tuples in the hash index to the result

62

- Outer join can be computed either as
- A join followed by addition of null-padded non-participating tuples
- by modifying the join algorithms

* Modifying merge join to compute X
- In X , non participating tuples are those in — 1 (

- Modify merge-join to compute X : During merging, for every tuple from
that do not match any tuple in , output padded with nulls

- Right outer-join and full outer-join can be computed similarly

63

- Overview

* Measures of Query Cost
- Selection Operation

- Sorting

» Join Operation

* Other Operations

@ Evaluation of Expressions

64

Evaluation of Expressions

We have seen algorithms for individual operations

Alternatives for evaluating an entire expression free

- Materialization ($4€): generate the results of an expression whose
inputs are relations or are already computed, materialize (store) it on

disk
- Pipelining (ifit7K£€): pass on tuples to parent operations even as an
operation is being executed

65

Materialization (424%)

Materialized evaluation (¥{¢it&) : evaluate one operation at a
time, starting at the lowest-level.

E.g., for the figure below, compute and store
<2500(

then compute and store the previous result’ join with customer, and
finally compute the projections on customer-name.

IT customer-name

X

T

O palance < 2500 customer

account

66

Materialization (Cont.)

Materialized evaluation (#J{¢1t5) is always applicable

Cost of writing results to disk and reading them back can be quite high

- overall cost = sum of costs of individual operations + cost of writing
infermediate results to disk

Double buffering (FXEEM): use two output buffers for each operation,
when one is full write it to disk while the other is getting filled

- Reduce the execution time

67

Pipelining (ifi7kk)

Pipelined evaluation (ifi7kZk11T5): evaluate several operations
simultaneously, passing the results of one operation to the next

E.g., in previous expression tree, don't store the result of
<2500(

- instead, pass tuples directly to the join. Similarly, don't store result of
join, pass tuples directly to projection

Much cheaper than materialization

Pipelining may not always be possible - e.qg., sort, hash-join
Pipelines can be executed in two ways:

- demand driven (&3KIEE) and producer driven (F=EIKzE])

68

Pipelining (Cont.)

- demand driven or lazy evaluation
- System repeatedly requests next tuple from top level operation
- Each operation requests next tuple from children operations as required, in order
to output its next tuple
- Betfween calls, operation has to maintain "state” so it knows what to return next

- Each operation is implemented as an iterator implementing the following
operations
open()
- E.g. file scan: initialize file scan, store pointer to beginning of file as state
- E.g.merge join: sort relations and store pointers to beginning of sorted relations as state

next()
- E.g. for file scan: Output next tuple, and advance and store file pointer
- E.g. for merge join: continue with merge from earlier state ftill next output fuple is found. Save
pointers as iterator state.

close()

69

Pipelining (Cont.)

producer-driven or eager pipelining
- Oper'a’ror's produce tuples eagerly and pass them up to their parents

Buffer maintained between operators, child puts tuples in buffer, parent
removes tuples from buffer

- if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

- System schedule operations that have space in output buffer and can
process more input tuples

70

* Practice exercises: 15.3, 15.6
- Exercises: 15.17

*+ Submission DDL: 12:59pm, May 14

71

End of Lecture 9

72

