
1复旦大学计算机科学技术学院

Lecture 14: System Recovery
第14讲：系统恢复

周水庚 / Shuigeng Zhou
邮件: sgzhou@fudan.edu.cn 网址：admis.fudan.edu.cn/sgzhou

Introduction to Databases
《数据库引论》

2

Content of the Course
• Part 0: Overview

– Lect. 0/1 (Feb. 20) - Ch1: Introduction
• Part 1 Relational Databases

– Lect. 2 (Feb. 27) - Ch2: Relational model
(data model, relational algebra)

– Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
– Lect. 4 (Mar. 13) – Ch4 & 5: Intermediate &

Advanced SQL
• Part 2 Database Design

– Lect. 5 (Mar. 20) - Ch6: Database design
based on E-R model

– Lect. 6 (Mar. 27) - Ch7: Relational database
design (Part I)

– Lect. 7 (Apr. 3) - Ch7: Relational database
design (Part II)

• Midterm exam: Apr. 10

• Part 3 Data Storage & Indexing
– Lect. 8 (Apr. 17) - Ch12/13: Storage

systems & structures
– Lect. 9 (Apr. 24) - Ch14: Indexing

• Part 4 Query Processing & Optimization
– May 1, holiday, no class
– Lect. 10 (May 8) - Ch15: Query processing
– Lect. 11 (May 15) - Ch16: Query

optimization
• Part 5 Transaction Management

– Lect. 12 (May 22) - Ch17: Transactions
– Lect. 13 (May22/29) - Ch18: Concurrency

control
– Lect. 14 (May 29/Jun. 5) - Ch19: Recovery

system
– Lect. 15 (Jun. 5) – Course review

Final exam: 13:00-15:00, Jun. 18

3

Database
System

Structure

Database

DBMS

Applications/tools

Users

4

Outline

 Failure Classification

• Storage

• Recovery and Atomicity

• Recovery Algorithms

• Buffer Management

5

Failure Classification
• Transaction failure (事务故障）

– Logical errors, e.g., illegal inputs

– System errors, e.g., dead locks

• System crash (系统崩溃)

– A power failure, or other hardware and software failure causes the

system to crash

• Disk failure (磁盘故障）

– A head crash or similar disk failure destroys all or part of disk storage

6

Recovery Algorithms

• Techniques to ensure database consistency and transaction atomicity

despite failures

• Recovery algorithms have two parts

– Actions taken during normal transaction processing
• 保证有足够的信息用于故障恢复

– Actions taken after a failure
• 恢复数据库到某个一致性状态

7

Outline

• Failure Classification

 Storage

• Recovery and Atomicity

• Recovery Algorithms

• Buffer Management

8

Storage Structure
• Volatile storage (易失性存储器)

– does not survive system crashes
– e.g., main memory, cache memory

• Nonvolatile storage (非易失性存储器）
– survives system crashes
– e.g., disk, tape, flash memory

• Stable storage (稳定存储器)
– a mythical form of storage that survives all failures
– approximated by maintaining multiple copies on distinct nonvolatile media

9

Data Access
• Physical blocks （物理块）

– the blocks residing on the disk

• Buffer blocks （缓冲块）
– the blocks residing temporarily in main memory

• Block movements between disk and main memory
– input(B)： physical block -> memory
– output(B): buffer block -> disk

• Each transaction �� has its private work-area (私有工作区)

– ��′s local copy of a data item � is called ��

10

Data Access (Cont.)
• Transaction transfers data items between system buffer blocks and

its private work-area using
– read(X)
– write(X)

• Transactions
– Perform read(X) while accessing X for the first time
– All subsequent accesses are to the local copy
– After last access, transaction executes write(X)

• output(BX) does not need to immediately follow write(X)
– System can perform the output operation when it deems fit

11

Example of Data Access

x

Y A
B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)
disk

work area
of T1

work area
of T2

memory

x2

12

Outline

• Failure Classification

• Storage

 Recovery and Atomicity

• Recovery Algorithms

• Buffer Management

13

Recovery and Atomicity
• Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state
– Consider transaction �� that transfers $50 from account A to account B
– Several output operations may be required for �� to output A and B
– A failure may occur after one of these modifications have been made but

before all of them are made
• To ensure atomicity despite failures, we first output information

describing the modifications to stable storage without modifying
the database itself

• Two approaches
– log-based recovery (基于日志的恢复)
– shadow-paging (影子页)

14

Log-based Recovery
• A log is kept on stable storage

– The log is a sequence of log records

• When transaction �� starts, it registers itself by writing a <�� start>
log record
– Before �� executes write(X), a log record <��, �, ��, ��> is written, where �� is

the old value and �� is the new value

– When �� finishes it’s last statement, the log record <��, commit> is written

• Two approaches using logs
– Deferred database modification (延迟数据库修改)
– Immediate database modification (即刻数据库修改)

15

Deferred Database Modification
• Record all modifications to the log, but defer all the writes to

after partial commit
– Transaction starts by writing <�� start> record to log

– A write(X) operation results in a log record <��, X, V> being written,
where V is the new value.

– The write is not performed on X at this time, but is deferred

– When �� partially commits, < �� commit> is written to the log

– Finally, the log records are read and used to actually execute the
previously deferred writes

16

Deferred Database Modification (Cont.)
• Recovery after a crash

– a transaction needs to be redone iff both <�� start> and < �� commit>
are there in the log

– Redo(��) sets the value of all data items updated by the transaction to
the new values

• Example:
– �� executes before ��, and initial: A=1000, B=2000, C=700

 T0: read (A) T1: read (C)
A: = A - 50 C:= C- 100
write (A) write (C)
read (B)
B:= B + 50
write (B)

17

Deferred Database Modification (Cont.)

• Recovery actions in each case above are:
– (a) No redo actions need to be taken
– (b) redo(T0) must be performed
– (c) redo(T0) must be performed followed by redo(T1)

18

Immediate Database Modification
• Allows database updates of an uncommitted transaction

– Update log records must be written before database items are written

– The output of updated blocks can take place at any time before or after

transaction commit

– Order in which blocks are output can be different from the order in which

they are written

19

Immediate Database Modification Example
Log Write Output

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
 A = 950
 B = 2050
<T0 commit>
<T1 start>
<T1, C, 700, 600>
 C = 600
 BB, BC
<T1 commit>
 BA

Note: BX denotes block containing X

<��, �, ��, ��>,
where �� is the old value,
and �� is the new value

20

Immediate Database Modification (Cont.)
• Recovery procedure has two operations

– undo(��): restore the value of all data items updated by transaction �� to the old
values

– redo(��): set the value of all data items updated by transaction �� to the new
values

• When recovering after failure
– Transaction �� needs to be undone if the log contains the record <�� start>, but

does not contain <�� commit>

– Transaction �� needs to be redone if the log contains both the record <�� start>
and <�� commit>

• Undo operations are performed first, then redo operations

21

Immediate DB Modification Recovery Example

• Recovery actions in each case above are:

– (a) undo(T0)

– (b) undo(T1) and redo(T0)

– (c) redo(T0) and redo(T1)

22

Checkpoints (检查点)
• Problems in the recovery procedure

– searching the entire log is time-consuming

– might unnecessarily redo transactions which have already output their

updates to the database

• Recovery procedure by setting checkpoints periodically

– Output all log records currently residing in main memory to stable storage

– Output all modified buffer blocks to the disk

– Write a log record <checkpoint> to stable storage

23

Checkpoints (Cont.)
• During recovery

– Scan backwards from the end of log to find the most recent <checkpoint>

record

– Continue scanning backwards till a record <��,start> is found. We assume

that all transactions are executed serially.

• Need only consider the part of log following above start record

• For all transactions (starting from �� or later) with no <��,commit>, execute

undo(��).

• Scanning forward in the log, for all transactions starting from �� or later with a

<��,commit>, execute redo(��).

24

Example of Checkpoints

• T1 can be ignored (updates already output to disk according to the checkpoint)

• T2 and T3 redone

• T4 undone

Tc Tf

T1

T2

T3

T4

checkpoint system failure

25

Outline

• Failure Classification
• Storage
• Recovery and Atomicity
 Recovery Algorithms
• Buffer Management

26

Recovery with Concurrent Transactions
• We modify the log-based recovery schemes to allow multiple

transactions to execute concurrently
– All transactions share a single disk buffer and a single log
– A buffer block can have data items updated by one or more transactions

• We assume concurrency control using strict two-phase locking
• Logging is done as described earlier

– Log records of different transactions may be interspersed（散布）in
the log

• The checkpointing technique and actions taken on recovery have to
be changed

27

Recovery With Concurrent Transactions (Cont.)
• Checkpoints are performed as before, except that the checkpoint

log record is the form <checkpoint L>
– L is a list of transactions active at the time of the checkpoint
– We assume no update is in progress while the checkpoint is carried out

• When the system recovers from a crash
– Initialize undo-list and redo-list to empty
– Scan the log backwards until a <checkpoint L> record is found:

• if the record is <�� commit>, add �� to redo-list

• if the record is <�� start> and �� is not in redo-list, add �� to undo-list

• for every �� in L, if �� is not in redo-list, add �� to undo-list

28

Example of Recovery
• Go through the steps of the recovery algorithm on the following log

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>
<T3 commit>

Tc Tf

T0

T1(Active)
T2 (Active)

T3

checkpoint system failure

Scan log backwards: Undo T1, T2 in undo-list
Scan log forwards: Redo T3 in redo-list

29

Recovery With Concurrent Transactions (Cont.)

• Recovery works as follows

– Scan log backwards from the end of the log

• During the scan, perform undo for each log record that belongs to a transaction

in undo-list

– Locate the most recent <checkpoint L> record

– Scan log forwards from the <checkpoint L> record till the end of the log

• During the scan, perform redo for each log record that belongs to a transaction

on redo-list

30

Outline

• Failure Classification
• Storage
• Recovery and Atomicity
• Recovery Algorithms
 Buffer Management

31

Log Record Buffering
• Log record buffering

– log records are buffered in main memory, instead of being output
directly to stable storage

– Log records are output to stable storage when a block of log records
in the buffer is full, or a log force operation is executed

– Log force is performed to commit a transaction by forcing all its log
records (including the commit record) to stable storage

– Several log records can be output using a single output operation, thus
reducing the I/O cost

32

Log Record Buffering (Cont.)

• Write-ahead logging (WAL) rule for buffering log records

– Log records are output to stable storage in the order in which they are

created

– Transaction �� enters the commit state only when the log record <��

commit> has been output to stable storage

– Before a block of data in main memory is output to the database, all log

records pertaining to data in that block must have been output to

stable storage

33

Database Buffering
• Database maintains an in-memory buffer of data blocks

– When a new block is needed, an existing block should be removed from buffer if
the buffer is full

– If the block chosen for removal has been updated, it must be output to disk
• No update should be in progress on a block when it is output to disk,

which is ensured as follows:
– Before writing a data item, transaction acquires exclusive lock on block containing

the data item
– Lock can be released once the write is completed.

• Such locks held for short duration are called latches闩锁
– Before a block is output to disk, the system acquires an exclusive latch on the block

• Ensures no update can be in progress on the block

34

Buffer Management (Cont.)
• Database buffer can be implemented either

– in an area of real main-memory reserved for the database, or
– in virtual memory

• Implementing buffer in reserved main-memory has drawbacks
– Memory is partitioned before-hand between database buffer and

applications, limiting flexibility
– Needs may change, and although operating system knows best how

memory should be divided up at any time, it cannot change the
partitioning of memory

35

Buffer Management (Cont.)
• Database buffers are generally implemented in virtual memory in

spite of some drawbacks
– When OS needs to evict（逐出）a page that has been modified, the page is

written to swap space on disk
– When DB decides to write buffer page to disk, buffer page may be in swap

space, and may have to be read from swap space on disk and output to the
database on disk, resulting in extra I/O

• Known as dual paging（双分页）problem
– Ideally when swapping out a database buffer page, operating system should pass

control to database, which in turn outputs page to database instead of to swap
space (making sure to output log records first)

• Dual paging can thus be avoided, but common operating systems do not support such
functionality.

36

Failure with Loss of Nonvolatile Storage
• Technique similar to checkpointing used to deal with loss of non-

volatile storage
– Periodically dump the entire content of the database to stable storage
– No transaction may be active during the dump procedure; a procedure similar to

checkpointing must take place
• Output all log records currently residing in main memory onto stable storage
• Output all buffer blocks onto the disk
• Copy the contents of the database to stable storage
• Output a record <dump> to log on stable storage

– To recover from disk failure
• Restore database from most recent dump.
• Consult the log and redo all transactions that committed after the dump

• Can be extended to allow transactions to be active during dump,
known as fuzzy dump or online dump

37

End of Lecture 14

