Introduction to Databases

CBHRPES S

Lecture 14: System Recovery

Fl44t: REWRE
JE7KBE / Shuigeng Zhou

HRfF: sgzhou@fudan.edu.cn PIdE: admis.fudan.edu.cn/sgzhou

HBRFEVTEYBERAREDE



Content of the Course

Part O: Overview * Part 3 Data Storage & Indexing
- Lect. 0/1 (Feb. 20) - Chl: Introduction - Lect. 8 (A;&pr 17) - Ch12/13 Storage
. tems & structures
Part 1 Relational Databases 5YS . .
- Lect. 2 (Feb. 27) - Ch2: Relational model - Lect. 9 (Apr. 24) - Ch14: Indexing
(data model, relational algebra)  Part 4 Query Processing & Optimization
- Lect. 3 (Mar. 6) - Ch3: SQL (Introduction)
- Lect. 4 (Mar. 13) - Ch4 & 5: Intermediate & - Lect. 10 (May 8) - Ch15: Query processing
Advanced SQL - Lect. 11 (May 15 ) - Ch16: Query
Part 2 Database Design opTimization
Lect. 5 (Mar. 20) - Ché: Database design - Part 5 Transaction Management
based on E-R model - Lect. 12 (May 22) - Ch17: Transactions
- Lect. 6 (Mar. 27) - Ch7: Relational database _ _ :
design (Part ) légﬁrgf (May22/29) - Ch18: Concurrency
- Lect. 7 (Apr. 3) - Ch7: Relational database ~ :
design (Part IT) Is:;;:‘:erln4 (May 29/Jun. B) - Ch19: Recovery
Midterm exam: Apr. 10 - Lect. 15 (Jun. B) - Course review

Final exam: 13:00-15:00, Jun. 18




(terllférvse :;:;is application sopl:::rcsated database
web users) programmers (anlysis) administrators Users
use ‘write use use

licati licatis dministrati H H
ChieasD CimD D g Applications/tools

A A e
i - !
D b i //‘ com]l_:ulier e |—> DML queries I |DDL interpreter i
i |
atabase | &G i :
! program DML compiler |
SY s * e m ! object code and organizer !
I I

i query evaluation J i DBMS
Structure | e query processor |
: I
E buffer manager | | file manager I authorization transaction E
i and integrity manager !
! manager !
i
i I
i i
i I
1 I
i / storage manager E
L N T e - 1

——
—
disk storage Database
indices | I data dictionary |

data statistical data



@ Failure Classification
- Storage

* Recovery and Atomicity
* Recovery Algorithms

+ Buffer Management



Failure Classification

Transaction failure (B )

- Logical errors, e.g., illegal inputs

- System errors, e.g., dead locks

System crash (RZiHR)

- A power failure, or other hardware and software failure causes the

system to crash

Disk failure (BEERHEE)

- A head crash or similar disk failure destroys all or part of disk storage



Recovery Algorithms

Techniques to ensure database consistency and transaction atomicity

despite failures

Recovery algorithms have two parts

- Actions taken during normal transaction processing
- RIEBEBNERBTHEKRE

- Actions taken after a failure
- IREFBEZEN—BUIEIRE



* Failure Classification
& Storage

» Recovery and Atomicity
* Recovery Algorithms

- Buffer Management



Storage Structure

Volatile storage (ZkMEEMERS)

- does not survive system crashes
- e.g., main memory, cache memory

Nonvolatile storage (IERKIETFAERS)

- survives system crashes
- eg., disk, tape, flash memory

Stable storage (BRETF{2S)

- amythical form of storage that survives all failures
- approximated by maintaining multiple copies on distinct nonvolatile media



Physical blocks (¥JI2#R)
- the blocks residing on the disk
Buffer blocks (ZZiHiHk)

- the blocks residing femporarily in main memory

* Block movements between disk and main memory
- input(B): physical block -> memory
- output(B): buffer block -> disk

Each transaction T; has its private work-area (FA5 T{EX)

— T;’s local copy of a data item X is called x;



Data Access (Cont.)

Transaction transfers data items between system buffer blocks and
its private work-area using

- read(X)
- write(X)

Transactions
- Perform read(X) while accessing X for the first time
- All subsequent accesses are to the local copy
- After last access, transaction executes write(X)
output(By) does not need to immediately follow write(X)
- System can perform the output operation when it deems fit

10



Example of Data Access

Buffer Block A ——*[ x
Buffer Block B —#| Y |—
f output(B)
read(X)
write(Y)

X[ ]

L
Y1
work area work area
of T, of T,

input(4)

output(B)

11



» Failure Classification

- Storage

& Recovery and Atomicity
* Recovery Algorithms

+ Buffer Management

12



Recovery and Atomicity

Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state

- Consider transaction T; that transfers $50 from account A to account B

- Several output operations may be required for T; to output A and B

- A failure may occur after one of these modifications have been made but
before all of them are made

To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying
the database itself

Two approaches

- log-based recovery (BT HENIRE)
- shadow-paging (®FR)

13



Log-based Recovery

A log is kept on stable storage

- The log is a sequence of log records
When transaction T; starts, it registers itself by writing a <T; start>
log record

- Before T; executes write(X), a log record <T;, X, V,, V,> is written, where V, is
the old value and V, is the new value

- When T; finishes it's last statement, the log record <T;, commit> is written
Two approaches using logs

- Deferred database modification (ZEiR#EEEEX)
- Immediate database modification (BPZI¥iEEEE)

14



Deferred Database Modification

Record all modifications to the log, but defer all the writes to
after partial commit

Transaction starts by writing <T; start> record to log

A write(X) operation results in a log record <T;, X, V> being written,
where V is the new value.

The write is not performed on X at this time, but is deferred
When T; partially commits, < T; commit> is written to the log

Finally, the log records are read and used to actually execute the
previously deferred writes

15



Deferred Database Modification (Cont.)

Recovery after a crash
- a ftransaction needs to be redone iff both <T; start> and < T; commit>

are there in the log
- Redo(T;) sets the value of all data items updated by the transaction to

the new values

Example:
— T, executes before T, and initial: A=1000, B=2000, €=700
To: read (A) Ty: read (C)
A:=A-50 C:= C- 100
write (A) write (C)
read (B)
B:i= B+50

write (B)
16



Deferred Database Modification (Cont.)

<T, start> <T, start> <T, start>
<Ty, A, 950> &l » As 9905 <Ty, A, 950>
<Ty, B, 2050> <T,, B, 2050> <T,, B, 2050>
<Tp commit> <T, commit>
<T; start> <T, start>
<T;, C, 600> <T;, C, 600>
<T, commit>

(a) (b) (c)

Recovery actions in each case above are:

- (a) No redo actions need to be taken

- (b) redo(T,) must be performed

- (c¢) redo(T,) must be performed followed by redo(T;)

17



Immediate Database Modification

Allows database updates of an uncommitted transaction
- Update log records must be written before database items are written

- The output of updated blocks can take place at any time before or after

transaction commit

- Order in which blocks are output can be different from the order in which

they are written

18



Immediate Database Modification Example

Log Write Output

<T:, X, Vy, Vy>, <T051'Gr'1'>
<T, A 1000, 950>

Vo i
where V, is the old value, <T,, B, 2000, 2050>

and V, is the new value A= 950
B=2050
<T,commit>
<T;start>
<T; C, 700, 600>
C=600
Bs, B,
<T; commit>
B,

Note: By denotes block containing X

19



Immediate Database Modification (Cont.)

- Recovery procedure has two operations

- undo(T;): restore the value of all data items updated by transaction T; to the old
values

- redo(T;): set the value of all data items updated by transaction T; to the new
values

* When recovering after failure

- Transaction T; needs to be undone if the log contains the record <T; start>, but

does not contain <T; commit>

- Transaction T; needs to be redone if the log contains both the record <T; start>
and <T; commit>

* Undo operations are performed first, then redo operations
20



Immediate DB Modification Recovery Example

<T0 start> <T0 start> <T0 start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<T,, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>

<T, commit> <T, commit>

<T, start> <T; start>

<T,, C, 700, 600> <T,, C, 700, 600>
<T, commit>

(a) (b) (c)

» Recovery actions in each case above are:
- (a) undo(T,)
- (b) undo(T;) and redo(T,)
- (c) redo(T,) and redo(T;)

21



Checkpoints (122 mR)

Problems in the recovery procedure
- searching the entire log is time-consuming

- might unnecessarily redo transactions which have already output their

updates to the database

Recovery procedure by setting checkpoints periodically
- Output all log records currently residing in main memory to stable storage
- Output all modified buffer blocks to the disk

- Write a log record <checkpoint> to stable storage

22



Checkpoints (Cont.)

- During recovery

- Scan backwards from the end of log to find the most recent <checkpoint>

record

- Continue scanning backwards till a record <T;,start> is found. We assume
that all fransactions are executed serially.
* Need only consider the part of log following above start record
* For all transactions (starting from T; or later) with no <T;,commit>, execute
undo(T;).
* Scanning forward in the log, for all transactions starting from T; or later with a

<T;,commit>, execute redo(T;). 23



Example of Checkpoints

T T; X
—T0
T2
— T
Tl
checkpoint system failure

T, can be ignored (updates already output to disk according to the checkpoint)
T, and T; redone

T, undone

24



» Failure Classification

- Storage

» Recovery and Atomicity
@ Recovery Algorithms

» Buffer Management

25



Recovery with Concurrent Transactions

We modify the log-based recovery schemes to allow multiple
transactions to execute concurrently

- All fransactions share a single disk buffer and a single log

- A buffer block can have data items updated by one or more transactions
We assume concurrency control using strict two-phase locking
Logging is done as described earlier

- Log records of different transactions may be interspersed (&%) in
the log

The checkpointing technique and actions taken on recovery have to
be changed

26



Recovery With Concurrent Transactions (Cont.)

Checkpoints are performed as before, except that the checkpoint
log record is the form <«heckpoint L>

- Lis alist of transactions active at the time of the checkpoint
- We assume no update is in progress while the checkpoint is carried out
When the system recovers from a crash
- Initialize undo-list and redo-list to empty
- Scan the log backwards until a «<heckpoint L >record is found:
* if the record is <T; commits add T; to redo-list
* if the record is 4; start>and T; is not in redo-list, add T; to undo-list

+ forevery T; inL,if T;is not in redo-list, add T; o undo-list

27



Example of Recovery

*  Go through the steps of the recovery algorithm on the following log

<T, start>
<Ty, A, 0, 10>

<T, commit> L. s
<T, start> |—TO-|
<T,, B, 0, 10> | Ti(Active)

<T, start> | T, (Active)
<T,, C, 0, 10> | 7-3.
<T,, C, 10, 20> | ]
<checkpoint {T,, T,}>
<T, start> checkpoint system failure
<T3, A, 10, 20>
<T,; D, 0, 10>

<T; commit>

v

Scan log backwards: Undo T1, T2 in undo-list
Scan log forwards: Redo T3 in redo-list

28



Recovery With Concurrent Transactions (Cont.)

*  Recovery works as follows

- Scan log backwards from the end of the log

* During the scan, perform undo for each log record that belongs to a transaction

in undo-list
- Locate the most recent <checkpoint L> record

- Scan log forwards from the <checkpoint L> record till the end of the log

* During the scan, perform redo for each log record that belongs to a tfransaction

on redo-list

29



» Failure Classification

- Storage

» Recovery and Atomicity
* Recovery Algorithms
@ Buffer Management

30



Log Record Buffering

Log record buffering

- log records are buffered in main memory, instead of being output
directly to stable storage

- Log records are output to stable storage when a block of log records
in the buffer is full, or a log force operation is executed

- Log force is performed to commit a transaction by forcing all its log
records (including the commit record) to stable storage

- Several log records can be output using a single output operation, thus
reducing the I/0 cost

31



Log Record Buffering (Cont.)

Write-ahead logging (WAL) rule for buffering log records
- Log records are output to stable storage in the order in which they are
created

- Transaction T; enters the commit state only when the log record <T;

commit> has been output to stable storage

- Before a block of data in main memory is output to the database, all log
records pertaining to data in that block must have been output to

stable storage

32



Database Buffering

* Database maintains an in-memory buffer of data blocks

- When a new block is needed, an existing block should be removed from buffer if
the buffer is full

- If the block chosen for removal has been updated, it must be output to disk

*  No update should be in progress on a block when it is output to disk,
which is ensured as follows:

- Before writing a data item, transaction acquires exclusive lock on block containing
the data item

- Lock can be released once the write is completed.
» Such locks held for short duration are called latchesi= i

- Before a block is output to disk, the system acquires an exclusive latch on the block
- Ensures no update can be in progress on the block

33



Buffer Management (Cont.)

Database buffer can be implemented either
- in an area of real main-memory reserved for the database, or
- in virtual memory
Implementing buffer in reserved main-memory has drawbacks

- Memory is partitioned before-hand between database buffer and
applications, limiting flexibility
- Needs may change, and although operating system knows best how

memory should be divided up at any time, it cannot change the
partitioning of memory

34



Buffer Management (Cont.)

+ Database buffers are generally implemented in virtual memory in
spite of some drawbacks

- When OS needs to evict (&4 ) a page that has been modified, the page is
written to swap space on disk

- When DB decides to write buffer page to disk, buffer page may be in swap
space, and may have to be read from swap space on disk and output to the
database on disk, resulting in extra I/0

Known as dual paging (345 ) problem

- TIdeally when swapping out a database buffer page, operating system should pass
control to database, which in turn outputs page to database instead of to swap
space (making sure to output log records first)

*  Dual paging can thus be avoided, but common operating systems do not support such
functionality.

35



Failure with Loss of Nonvolatile Storage

Technique similar to checkpointing used to deal with loss of non-
volatile storage
- Periodically dump the entire content of the database to stable storage

- No transaction may be active during the dump procedure; a procedure similar to
checkpointing must take place
Output all log records currently residing in main memory onto stable storage
Output all buffer blocks onto the disk
Copy the contents of the database to stable storage
Output a record <dump> to log on stable storage
- To recover from disk failure
Restore database from most recent dump.
Consult the log and redo all transactions that committed after the dump

Can be extended to allow transactions to be active during dump,
known as fuzzy dump or online dump

36



End of Lecture 14

37




